Qifei Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6538182/publications.pdf Version: 2024-02-01

Οιέξι Ζηλνίς

#	Article	IF	CITATIONS
1	Regional climate change and its effects on river runoff in the Tarim Basin, China. Hydrological Processes, 2006, 20, 2207-2216.	1.1	231
2	Progress and prospects of climate change impacts on hydrology in the arid region of northwest China. Environmental Research, 2015, 139, 11-19.	3.7	216
3	Have GRACE satellites overestimated groundwater depletion in the Northwest India Aquifer?. Scientific Reports, 2016, 6, 24398.	1.6	202
4	Influences of recent climate change and human activities on water storage variations in Central Asia. Journal of Hydrology, 2017, 544, 46-57.	2.3	197
5	Why does precipitation in northwest China show a significant increasing trend from 1960 to 2010?. Atmospheric Research, 2016, 167, 275-284.	1.8	196
6	Changes in Central Asia's Water Tower: Past, Present and Future. Scientific Reports, 2016, 6, 35458.	1.6	195
7	Potential impacts of climate change on vegetation dynamics in Central Asia. Journal of Geophysical Research D: Atmospheres, 2015, 120, 12345-12356.	1.2	193
8	Impacts of Climate Change and Human Activities on the Surface Runoff in the Tarim River Basin over the Last Fifty Years. Water Resources Management, 2008, 22, 1159-1171.	1.9	169
9	Why does the temperature rise faster in the arid region of northwest China?. Journal of Geophysical Research, 2012, 117, .	3.3	132
10	Multi-scale assessments of droughts: A case study in Xinjiang, China. Science of the Total Environment, 2018, 630, 444-452.	3.9	131
11	Spatial distribution and temporal trends of mean precipitation and extremes in the arid region, northwest of China, during 1960–2010. Hydrological Processes, 2013, 27, 1807-1818.	1.1	124
12	Multivariate assessment and attribution of droughts in Central Asia. Scientific Reports, 2017, 7, 1316.	1.6	122
13	Plausible impact of global climate change on water resources in the Tarim River Basin. Science in China Series D: Earth Sciences, 2005, 48, 65-73.	0.9	112
14	Temperature and precipitation changes in different environments in the arid region of northwest China. Theoretical and Applied Climatology, 2013, 112, 589-596.	1.3	111
15	Recent climate and hydrological changes in a mountain–basin system in Xinjiang, China. Earth-Science Reviews, 2022, 226, 103957.	4.0	107
16	Changes of snowfall under warming in the Tibetan Plateau. Journal of Geophysical Research D: Atmospheres, 2017, 122, 7323-7341.	1.2	105
17	NDVI-based vegetation responses to climate change in an arid area of China. Theoretical and Applied Climatology, 2016, 126, 213-222.	1.3	104
18	Analysis of changing pan evaporation in the arid region of Northwest China. Water Resources Research, 2013, 49, 2205-2212.	1.7	100

#	Article	IF	CITATIONS
19	Changes in daily climate extremes in the arid area of northwestern China. Theoretical and Applied Climatology, 2013, 112, 15-28.	1.3	98
20	Quantifying the effects of climate variability and human activities on runoff for Kaidu River Basin in arid region of northwest China. Theoretical and Applied Climatology, 2013, 111, 537-545.	1.3	95
21	The Nonlinear trend of runoff and its response to climate change in the Aksu River, western China. International Journal of Climatology, 2011, 31, 687-695.	1.5	83
22	Effects of ecological water conveyance on groundwater dynamics and riparian vegetation in the lower reaches of Tarim River, China. Hydrological Processes, 2010, 24, 170-177.	1.1	82
23	Dependence of trends in and sensitivity of drought over China (1961–2013) on potential evaporation model. Geophysical Research Letters, 2016, 43, 206-213.	1.5	78
24	Intensification of extreme precipitation in arid Central Asia. Journal of Hydrology, 2021, 598, 125760.	2.3	77
25	Large Hydrological Processes Changes in the Transboundary Rivers of Central Asia. Journal of Geophysical Research D: Atmospheres, 2018, 123, 5059-5069.	1.2	76
26	Responses of Surface Runoff to Climate Change and Human Activities in the Arid Region of Central Asia: A Case Study in the Tarim River Basin, China. Environmental Management, 2013, 51, 926-938.	1.2	75
27	Response of riparian vegetation to water-table changes in the lower reaches of Tarim River, Xinjiang Uygur, China. Hydrogeology Journal, 2008, 16, 1371-1379.	0.9	73
28	Rapidly declining surface and terrestrial water resources in Central Asia driven by socio-economic and climatic changes. Science of the Total Environment, 2021, 784, 147193.	3.9	71
29	Mechanisms and simulation of accelerated shrinkage of continental glaciers: A case study of Urumqi Glacier No. 1 in eastern Tianshan, Central Asia. Journal of Earth Science (Wuhan, China), 2011, 22, 423-430.	1.1	70
30	Fuzzy comprehensive evaluation model for water resources carrying capacity in Tarim River Basin, Xinjiang, China. Chinese Geographical Science, 2009, 19, 89-95.	1.2	69
31	Response of vegetation NDVI to climatic extremes in the arid region of Central Asia: a case study in Xinjiang, China. Theoretical and Applied Climatology, 2018, 131, 1503-1515.	1.3	67
32	Climate change and its effects on runoff of Kaidu River, Xinjiang, China: A multiple time-scale analysis. Chinese Geographical Science, 2008, 18, 331-339.	1.2	66
33	Global perspective on hydrology, water balance, and water resources management in arid basins. Hydrological Processes, 2010, 24, 129-135.	1.1	66
34	Analysis on the ecological benefits of the stream water conveyance to the dried-up river of the lower reaches of Tarim River, China. Science in China Series D: Earth Sciences, 2004, 47, 1053-1064.	0.9	64
35	Desert riparian vegetation and groundwater in the lower reaches of the Tarim River basin. Environmental Earth Sciences, 2015, 73, 547-558.	1.3	64
36	Hydro-climatic changes and their impacts on vegetation in Xinjiang, Central Asia. Science of the Total Environment, 2019, 660, 724-732.	3.9	64

#	Article	IF	CITATIONS
37	Assessment of candidate distributions for SPI/SPEI and sensitivity of drought to climatic variables in China. International Journal of Climatology, 2019, 39, 4392-4412.	1.5	64
38	Climatic and associated atmospheric water cycle changes over the Xinjiang, China. Journal of Hydrology, 2020, 585, 124823.	2.3	64
39	Identification of long-term trends and seasonality in high-frequency water quality data from the Yangtze River basin, China. PLoS ONE, 2018, 13, e0188889.	1.1	62
40	The Relationship between NDVI and Climate Factors at Different Monthly Time Scales: A Case Study of Grasslands in Inner Mongolia, China (1982–2015). Sustainability, 2019, 11, 7243.	1.6	58
41	Water and ecological security: dealing with hydroclimatic challenges at the heart of China's Silk Road. Environmental Earth Sciences, 2016, 75, 1.	1.3	57
42	Potential evapotranspiration and its attribution over the past 50 years in the arid region of Northwest China. Hydrological Processes, 2014, 28, 1025-1031.	1.1	55
43	Runoff responses to climate change in arid region of northwestern China during 1960–2010. Chinese Geographical Science, 2013, 23, 286-300.	1.2	54
44	Progress, Challenges and Prospects of Eco-Hydrological Studies in the Tarim River Basin of Xinjiang, China. Environmental Management, 2013, 51, 138-153.	1.2	54
45	Quantifying the effects of climate variability, direct and indirect land use change, and human activities on runoff. Journal of Hydrology, 2020, 584, 124684.	2.3	52
46	Climate change and hydrologic process response in the Tarim River Basin over the past 50 years. Science Bulletin, 2006, 51, 25-36.	1.7	51
47	Detecting the Causal Effect of Soil Moisture on Precipitation Using Convergent Cross Mapping. Scientific Reports, 2018, 8, 12171.	1.6	50
48	Wavelet analysis and nonparametric test for climate change in Tarim River Basin of Xinjiang during 1959–2006. Chinese Geographical Science, 2009, 19, 306-313.	1.2	49
49	Recent recovery of surface wind speed in northwest China. International Journal of Climatology, 2018, 38, 4445-4458.	1.5	49
50	Hydrological and water cycle processes of inland river basins in the arid region of Northwest China. Journal of Arid Land, 2019, 11, 161-179.	0.9	49
51	Differentiation of Soil Conditions over Low Relief Areas Using Feedback Dynamic Patterns. Soil Science Society of America Journal, 2010, 74, 861-869.	1.2	48
52	The Spatiotemporal Response of Soil Moisture to Precipitation and Temperature Changes in an Arid Region, China. Remote Sensing, 2018, 10, 468.	1.8	47
53	Diet shift: Considering environment, health and food culture. Science of the Total Environment, 2020, 719, 137484.	3.9	45
54	Comparison of three drought indices and their evolutionary characteristics in the arid region of northwestern China. Atmospheric Science Letters, 2017, 18, 132-139.	0.8	44

#	Article	IF	CITATIONS
55	Understanding the spatial differences in terrestrial water storage variations in the Tibetan Plateau from 2002 to 2016. Climatic Change, 2018, 151, 379-393.	1.7	43
56	Changes in temporal inequality of precipitation extremes over China due to anthropogenic forcings. Npj Climate and Atmospheric Science, 2022, 5, .	2.6	43
57	Longâ€ŧerm change of seasonal snow cover and its effects on river runoff in the Tarim River basin, northwestern China. Hydrological Processes, 2009, 23, 2045-2055.	1.1	42
58	Vegetation dynamics and their response to hydroclimatic factors in the Tarim River Basin, China. Ecohydrology, 2013, 6, 927-936.	1.1	40
59	Physiological response of natural plants to the change of groundwater level in the lower reaches of Tarim River, Xinjiang*. Progress in Natural Science: Materials International, 2004, 14, 975-983.	1.8	38
60	Rational groundwater table indicated by the eco-physiological parameters of the vegetation: A case study of ecological restoration in the lower reaches of the Tarim River. Science Bulletin, 2006, 51, 8-15.	1.7	37
61	Integrating Wavelet Analysis and BPANN to Simulate the Annual Runoff With Regional Climate Change: A Case Study of Yarkand River, Northwest China. Water Resources Management, 2014, 28, 2523-2537.	1.9	36
62	Use of ² H and ¹⁸ O stable isotopes to investigate water sources for different ages of <i>Populus euphratica</i> along the lower Heihe River. Ecological Research, 2015, 30, 581-587.	0.7	36
63	How Hydrologic Processes Differ Spatially in a Large Basin: Multisite and Multiobjective Modeling in the Tarim River Basin. Journal of Geophysical Research D: Atmospheres, 2018, 123, 7098-7113.	1.2	36
64	Long-term trend and fractal of annual runoff process in mainstream of Tarim River. Chinese Geographical Science, 2008, 18, 77-84.	1.2	35
65	Hydroclimatic changes of Lake Bosten in Northwest China during the last decades. Scientific Reports, 2018, 8, 9118.	1.6	35
66	Recent Lake Area Changes in Central Asia. Scientific Reports, 2019, 9, 16277.	1.6	35
67	Stable isotopes of atmospheric precipitation and its environmental drivers in the Eastern Chinese Loess Plateau, China. Journal of Hydrology, 2020, 581, 124404.	2.3	35
68	Spatial and temporal characteristics of stable isotopes in the Tarim River Basin. Isotopes in Environmental and Health Studies, 2016, 52, 281-297.	0.5	33
69	Spatial patterns of vegetation carbon sinks and sources under water constraint in Central Asia. Journal of Hydrology, 2020, 590, 125355.	2.3	33
70	Evolution characteristics of groundwater and its response to climate and land-cover changes in the oasis of dried-up river in Tarim Basin. Journal of Hydrology, 2021, 594, 125644.	2.3	33
71	Diminished groundwater recharge and circulation relative to degrading riparian vegetation in the middle Tarim River, Xinjiang Uygur, Western China. Hydrological Processes, 2010, 24, 147-159.	1.1	31
72	Assessment of wetland fragmentation in the Tarim River basin, western China. Environmental Geology, 2009, 57, 455-464.	1.2	31

#	Article	IF	CITATIONS
73	An integrated statistical approach to identify the nonlinear trend of runoff in the Hotan River and its relation with climatic factors. Stochastic Environmental Research and Risk Assessment, 2011, 25, 223-233.	1.9	31
74	Response of runoff to change of atmospheric 0°C level height in summer in arid region of Northwest China. Science China Earth Sciences, 2012, 55, 1533-1544.	2.3	31
75	A hybrid model to assess the impact of climate variability on streamflow for an ungauged mountainous basin. Climate Dynamics, 2018, 50, 2829-2844.	1.7	31
76	Xylem hydraulic conductivity and embolism in riparian plants and their responses to drought stress in desert of Northwest China. Ecohydrology, 2013, 6, 984-993.	1.1	29
77	Hydrochemical assessment of surface water for irrigation purposes and its influence on soil salinity in Tikanlik oasis, China. Environmental Earth Sciences, 2016, 75, 1.	1.3	29
78	Analysis of water level variation of lakes and reservoirs in Xinjiang, China using ICESat laser altimetry data (2003–2009). PLoS ONE, 2017, 12, e0183800.	1.1	29
79	Historic and Simulated Desert-Oasis Ecotone Changes in the Arid Tarim River Basin, China. Remote Sensing, 2021, 13, 647.	1.8	29
80	Understanding temporal and spatial complexity of precipitation distribution in Xinjiang, China. Theoretical and Applied Climatology, 2016, 123, 321-333.	1.3	28
81	Ecological Impacts of Land Use Change in the Arid Tarim River Basin of China. Remote Sensing, 2022, 14, 1894.	1.8	27
82	Water use strategies of the desert riparian forest plant community in the lower reaches of Heihe River Basin, China. Science China Earth Sciences, 2014, 57, 1293-1305.	2.3	26
83	Changes in annual and seasonal temperature extremes in the arid region of China, 1960–2010. Natural Hazards, 2013, 65, 1913-1930.	1.6	25
84	The effects of groundwater depth on water uptake of Populus euphratica and Tamarix ramosissima in the hyperarid region of Northwestern China. Environmental Science and Pollution Research, 2016, 23, 17404-17412.	2.7	25
85	Spatioâ€ŧemporal variations of nonlinear trends of precipitation over an arid region of northwest China according to the extremeâ€point symmetric mode decomposition method. International Journal of Climatology, 2018, 38, 2239-2249.	1.5	25
86	Estimation of net primary productivity and its driving factors in the Ili River Valley, China. Journal of Arid Land, 2018, 10, 781-793.	0.9	25
87	Stable isotope variations in precipitation in the northwesternmost Tibetan Plateau related to various meteorological controlling factors. Atmospheric Research, 2019, 227, 66-78.	1.8	25
88	Driving Forces of the Changes in Vegetation Phenology in the Qinghai–Tibet Plateau. Remote Sensing, 2021, 13, 4952.	1.8	25
89	Impact of Climate Change on the Hydrological Regime of the Yarkant River Basin, China: An Assessment Using Three SSP Scenarios of CMIP6 GCMs. Remote Sensing, 2022, 14, 115.	1.8	25
90	Patch-level based vegetation change and environmental drivers in Tarim River drainage area of West China. Landscape Ecology, 2010, 25, 1447-1455.	1.9	24

#	Article	IF	CITATIONS
91	The nonlinear hydro-climatic process in the Yarkand River, northwestern China. Stochastic Environmental Research and Risk Assessment, 2013, 27, 389-399.	1.9	24
92	Recent Changes in Water Discharge in Snow and Glacier Melt-Dominated Rivers in the Tienshan Mountains, Central Asia. Remote Sensing, 2020, 12, 2704.	1.8	24
93	Increasing terrestrial ecosystem carbon release in response to autumn cooling and warming. Nature Climate Change, 2022, 12, 380-385.	8.1	24
94	Evolvement characteristics of population and economic gravity centers in tarim river basin, uygur autonomous region of xinjiang, China. Chinese Geographical Science, 2013, 23, 765-772.	1.2	23
95	Comparative study of streamflow components in two inland rivers in the Tianshan Mountains, Northwest China. Environmental Earth Sciences, 2016, 75, 1.	1.3	23
96	Low-carbon economic development in Central Asia based on LMDI decomposition and comparative decoupling analyses. Journal of Arid Land, 2019, 11, 513-524.	0.9	23
97	Estimation of annual average soil loss using the Revised Universal Soil Loss Equation (RUSLE) integrated in a Geographical Information System (GIS) of the Esil River basin (ERB), Kazakhstan. Acta Geophysica, 2019, 67, 921-938.	1.0	23
98	Glacier change in the Karatal river basin, Zhetysu (Dzhungar) Alatau, Kazakhstan. Annals of Glaciology, 2016, 57, 11-19.	2.8	22
99	Drought promoted the disappearance of civilizations along the ancient Silk Road. Environmental Earth Sciences, 2016, 75, 1.	1.3	22
100	Quantitatively evaluating the effects of climate factors on runoff change for Aksu River in northwestern China. Theoretical and Applied Climatology, 2016, 123, 97-105.	1.3	22
101	Recent fall Eurasian cooling linked to North Pacific sea surface temperatures and a strengthening Siberian high. Nature Communications, 2020, 11, 5202.	5.8	22
102	Declining snowfall fraction in the alpine regions, Central Asia. Scientific Reports, 2020, 10, 3476.	1.6	22
103	Periodic changes of stream flow in the last 40 years in Tarim River Basin, Xinjiang, China. Hydrological Processes, 2008, 22, 4214-4221.	1.1	21
104	Combining BPANN and wavelet analysis to simulate hydro-climatic processes—a case study of the Kaidu River, North-west China. Frontiers of Earth Science, 2013, 7, 227-237.	0.9	21
105	Scenario-based runoff prediction for the Kaidu River basin of the Tianshan Mountains, Northwest China. Environmental Earth Sciences, 2016, 75, 1.	1.3	21
106	Spatial and temporal variability of water vapor pressure in the arid region of northwest China, during 1961–2011. Theoretical and Applied Climatology, 2016, 123, 683-691.	1.3	21
107	Experimental study on water transport observations of desert riparian forests in the lower reaches of the Tarim River in China. International Journal of Biometeorology, 2017, 61, 1055-1062.	1.3	21
108	Vegetation responses to an ecological water conveyance project in the lower reaches of the Heihe River basin. Ecohydrology, 2017, 10, e1866.	1.1	21

#	Article	IF	CITATIONS
109	Hydrological extreme variability in the headwater of Tarim River: links with atmospheric teleconnection and regional climate. Stochastic Environmental Research and Risk Assessment, 2014, 28, 443-453.	1.9	20
110	Evaluating the vegetation growing season changes in the arid region of northwestern China. Theoretical and Applied Climatology, 2014, 118, 569-579.	1.3	20
111	Temporal and spatial variation of water stable isotopes (¹⁸ O and ² H) in the Kaidu River basin, Northwestern China. Hydrological Processes, 2014, 28, 653-661.	1.1	20
112	Impact of groundwater depth on leaf hydraulic properties and drought vulnerability of Populus euphratica in the Northwest of China. Trees - Structure and Function, 2016, 30, 2029-2039.	0.9	20
113	Multiscale evolution of surface air temperature in the arid region of Northwest China and its linkages to ocean oscillations. Theoretical and Applied Climatology, 2017, 128, 945-958.	1.3	20
114	Loss of terrestrial water storage in the Tianshan mountains from 2003 to 2015. International Journal of Remote Sensing, 2019, 40, 8342-8358.	1.3	20
115	The effects of ecological rehabilitation projects on the resilience of an extremely drought-prone desert riparian forest ecosystem in the Tarim River Basin, Xinjiang, China. Scientific Reports, 2021, 11, 18485.	1.6	20
116	Projected Meteorological Drought over Asian Drylands under Different CMIP6 Scenarios. Remote Sensing, 2021, 13, 4409.	1.8	20
117	Characteristics in streamflow and extremes in the Tarim River, China: trends, distribution and climate linkage. International Journal of Climatology, 2015, 35, 761-776.	1.5	19
118	Risk assessment of water resource shortages in the Aksu River basin of northwest China under climate change. Journal of Environmental Management, 2022, 305, 114394.	3.8	19
119	Analysis on water potential of Populus euphratica oliv and its meaning in the lower reaches of Tarim River, Xinjiang. Science Bulletin, 2006, 51, 221-228.	1.7	18
120	Response of groundwater chemistry to water deliveries in the lower reaches of Tarim River, Northwest China. Environmental Geology, 2008, 53, 1365-1373.	1.2	18
121	Impacts of climatic change on river runoff in northern Xinjiang of China over last fifty years. Chinese Geographical Science, 2010, 20, 193-201.	1.2	18
122	Statistical analysis of groundwater chemistry of the Tarim River lower reaches, Northwest China. Environmental Earth Sciences, 2012, 65, 1807-1820.	1.3	18
123	Restoration of the lower reaches of the Tarim River in China. Regional Environmental Change, 2013, 13, 1021-1029.	1.4	18
124	Effect of herbivory on the growth and photosynthesis of replanted Calligonum caput-medusae saplings in an infertile arid desert. Plant Ecology, 2014, 215, 155-167.	0.7	18
125	Effects of climate fluctuations on runoff in the headwater region of the Kaidu River in northwestern China. Frontiers of Earth Science, 2014, 8, 309-318.	0.9	18
126	Implications of climate change for water management of an arid inland lake in Northwest China. Lake and Reservoir Management, 2015, 31, 202-213.	0.4	18

#	Article	IF	CITATIONS
127	Effect of subâ€cloud evaporation on precipitation in the Tianshan Mountains (Central Asia) under the influence of global warming. Hydrological Processes, 2020, 34, 5557-5566.	1.1	18
128	Adaptability of machine learning methods and hydrological models to discharge simulations in data-sparse glaciated watersheds. Journal of Arid Land, 2021, 13, 549-567.	0.9	18
129	The potential benefits of dietary shift in China: Synergies among acceptability, health, and environmental sustainability. Science of the Total Environment, 2021, 779, 146497.	3.9	18
130	Ecoâ€hydrology and sustainable development in the arid regions of China. Hydrological Processes, 2010, 24, 127-128.	1.1	17
131	Groundwater circulation relative to water quality and vegetation in an arid transitional zone linking oasis, desert and river. Science Bulletin, 2013, 58, 3088-3097.	1.7	17
132	Adaptation strategies of desert riparian forest vegetation in response to drought stress. Ecohydrology, 2013, 6, 956-973.	1.1	17
133	Contribution of meteorological input in calibrating a distributed hydrologic model in a watershed in the Tianshan Mountains, China. Environmental Earth Sciences, 2015, 74, 2413-2424.	1.3	17
134	Climate change in the Tianshan and northern Kunlun Mountains based on GCM simulation ensemble with Bayesian model averaging. Journal of Arid Land, 2017, 9, 622-634.	0.9	17
135	Downscaling Precipitation in the Data-Scarce Inland River Basin of Northwest China Based on Earth System Data Products. Atmosphere, 2019, 10, 613.	1.0	17
136	Geospatial land surface-based thermal scenarios for wetland ecological risk assessment and its landscape dynamics simulation in Bayanbulak Wetland, Northwestern China. Landscape Ecology, 2021, 36, 1699-1723.	1.9	17
137	Hydrological Drought Risk Assessment Using a Multidimensional Copula Function Approach in Arid Inland Basins, China. Water (Switzerland), 2020, 12, 1888.	1.2	16
138	Applicability Evaluation of Multisource Satellite Precipitation Data for Hydrological Research in Arid Mountainous Areas. Remote Sensing, 2020, 12, 2886.	1.8	16
139	Exploring annual lake dynamics in Xinjiang (China): spatiotemporal features and driving climate factors from 2000 to 2019. Climatic Change, 2021, 166, 1.	1.7	16
140	Continuous warming shift greening towards browning in the Southeast and Northwest High Mountain Asia. Scientific Reports, 2021, 11, 17920.	1.6	16
141	Abiotic regulators of soil respiration in desert ecosystems. Environmental Geology, 2009, 57, 1855-1864.	1.2	15
142	Climatic change of inland river basin in an arid area: a case study in northern Xinjiang, China. Theoretical and Applied Climatology, 2012, 107, 143-154.	1.3	15
143	Influences of forest on MODIS snow cover mapping and snow variations in the Amur River basin in Northeast Asia during 2000–2014. Hydrological Processes, 2017, 31, 3225-3241.	1.1	15
144	Why does the runoff in Hotan River show a slight decreased trend in northwestern China?. Atmospheric Science Letters, 2018, 19, e800.	0.8	15

#	Article	IF	CITATIONS
145	How to Sustainably Use Water Resources—A Case Study for Decision Support on the Water Utilization of Xinjiang, China. Water (Switzerland), 2020, 12, 3564.	1.2	15
146	Has the Bosten Lake Basin been dry or wet during the climate transition in Northwest China in the past 30Âyears?. Theoretical and Applied Climatology, 2020, 141, 627-644.	1.3	15
147	Recent Oasis Dynamics and Ecological Security in the Tarim River Basin, Central Asia. Sustainability, 2022, 14, 3372.	1.6	15
148	Understanding the dynamic coupling between vegetation cover and climatic factors in a semiarid region—a case study of Inner Mongolia, China. Ecohydrology, 2013, 6, 917-926.	1.1	14
149	Regional disparities in warm season rainfall changes over arid eastern–central Asia. Scientific Reports, 2018, 8, 13051.	1.6	14
150	Drought Risk Assessment in Central Asia Using a Probabilistic Copula Function Approach. Water (Switzerland), 2020, 12, 421.	1.2	14
151	Modeling streamflow driven by climate change in data-scarce mountainous basins. Science of the Total Environment, 2021, 790, 148256.	3.9	14
152	Research Advances in Plant Physiology and Ecology of Desert Riparian Forests under Drought Stress. Forests, 2022, 13, 619.	0.9	14
153	Spatial distribution of the extreme hydrological events in Xinjiang, north-west of China. Natural Hazards, 2013, 67, 483-495.	1.6	13
154	Spatial variability of soil carbon to nitrogen ratio and its driving factors in Ili River valley, Xinjiang, Northwest China. Chinese Geographical Science, 2017, 27, 529-538.	1.2	13
155	Quantitative evaluation of the rainfall influence on streamflow in an inland mountainous river basin within Central Asia. Hydrological Sciences Journal, 2018, 63, 17-30.	1.2	13
156	Effects of land use and cover change on surface wind speed in China. Journal of Arid Land, 2019, 11, 345-356.	0.9	13
157	Simulating the precipitation in the data-scarce Tianshan Mountains, Northwest China based on the Earth system data products. Arabian Journal of Geosciences, 2020, 13, 1.	0.6	13
158	Prediction of water table depths under soil water-groundwater interaction and stream water conveyance. Science China Earth Sciences, 2011, 54, 420-430.	2.3	12
159	The threshold of soil moisture and salinity influencing the growth of Populus euphratica and Tamarix ramosissima in the extremely arid region. Environmental Earth Sciences, 2012, 66, 2519-2529.	1.3	12
160	Community characteristics of wild fruit forests along elevation gradients and the relationships between the wild fruit forests and environments in the Keguqin Mountain region of lii. Journal of Mountain Science, 2012, 9, 115-126.	0.8	12
161	Spatial characteristics of surface water and groundwater using water stable isotope in the Tarim River Basin, northwestern China. Ecohydrology, 2013, 6, 1031-1039.	1.1	12
162	Spatially explicit estimation of domestic water use in the arid region of northwestern China: 1985–2009. Hydrological Sciences Journal, 2013, 58, 162-176.	1.2	12

#	Article	IF	CITATIONS
163	Changes in snow and glacier cover in an arid watershed of the western Kunlun Mountains using multisource remote-sensing data. International Journal of Remote Sensing, 2014, 35, 234-252.	1.3	12
164	Runoff response to the glacier shrinkage in the Karatal river basin, Kazakhstan. Arabian Journal of Geosciences, 2016, 9, 1.	0.6	12
165	Spatial variations and controlling factors of ground ice isotopes in permafrost areas of the central Qinghai-Tibet Plateau. Science of the Total Environment, 2019, 688, 542-554.	3.9	12
166	An approach to simulate the climate-driven streamflow in the data-scarce mountain basins of Northwest China. Journal of Earth System Science, 2019, 128, 1.	0.6	12
167	Monitoring and Predicting Drought Based on Multiple Indicators in an Arid Area, China. Remote Sensing, 2020, 12, 2298.	1.8	12
168	Response of Precipitation in Tianshan to Global Climate Change Based on the Berkeley Earth and ERA5 Reanalysis Products. Remote Sensing, 2022, 14, 519.	1.8	12
169	Responses of streamflow to climate change in the northern slope of Tianshan Mountains in Xinjiang: A case study of the Toutun River basin. Science in China Series D: Earth Sciences, 2007, 50, 42-48.	0.9	11
170	Intra-annual distribution and decadal change in extreme hydrological events in Xinjiang, Northwestern China. Natural Hazards, 2014, 70, 119-133.	1.6	11
171	Error assessment of grid-based direct solar radiation models. International Journal of Geographical Information Science, 2015, 29, 1782-1806.	2.2	11
172	Analysis on the streamflow components of the typical inland river, Northwest China. Hydrological Sciences Journal, 2016, , 1-12.	1.2	11
173	Land-use/cover conversion affects soil organic-carbon stocks: A case study along the main channel of the Tarim River, China. PLoS ONE, 2018, 13, e0206903.	1.1	11
174	The Temporal and Spatial Variations in Lake Surface Areas in Xinjiang, China. Water (Switzerland), 2018, 10, 431.	1.2	11
175	Spatiotemporal variation of upper-air and surface wind speed and its influencing factors in northwestern China during 1980–2012. Theoretical and Applied Climatology, 2018, 133, 1303-1314.	1.3	11
176	Tree rings: A key ecological indicator for reconstruction of groundwater depth in the lower Tarim River, Northwest China. Ecohydrology, 2019, 12, e2142.	1.1	11
177	Quantitative assessment of the ecological effects of land use/cover change in the arid region of Northwest China. Environmental Monitoring and Assessment, 2019, 191, 704.	1.3	11
178	Physiological response of riparian plants to watering in hyper-arid areas of Tarim River, China. Frontiers of Biology in China: Selected Publications From Chinese Universities, 2007, 2, 54-61.	0.2	10
179	Multi-Objective Calibration of a Distributed Hydrological Model in a Highly Glacierized Watershed in Central Asia. Water (Switzerland), 2019, 11, 554.	1.2	10
180	Identification of the Space-Time Variability of Hydrological Drought in the Arid Region of Northwestern China. Water (Switzerland), 2019, 11, 1051.	1.2	9

#	Article	IF	CITATIONS
181	Nonlinear response of runoff to atmospheric freezing level height variation based on hybrid prediction models. Hydrological Sciences Journal, 2019, 64, 1556-1572.	1.2	8
182	Water use efficiency data from 2000 to 2019 in measuring progress towards SDGs in Central Asia. Big Earth Data, 2022, 6, 90-102.	2.0	8
183	Quantifying the Relative Contribution of Climate Change and Anthropogenic Activities on Runoff Variations in the Central Part of Tajikistan in Central Asia. Land, 2021, 10, 525.	1.2	8
184	Recent Changes in Glaciers in the Northern Tien Shan, Central Asia. Remote Sensing, 2022, 14, 2878.	1.8	8
185	Response of the accumulation of proline in the bodies ofPopulus euphratica to the change of groundwater level at the lower reaches of Tarim River. Science Bulletin, 2003, 48, 1995-1999.	1.7	7
186	Physiological response of Tamarix ramosissima under water stress along the lower reaches of Tarim River. Science Bulletin, 2006, 51, 1123-1129.	1.7	7
187	Upper-air temperature change trends above arid region of Northwest China during 1960–2009. Theoretical and Applied Climatology, 2015, 120, 239-248.	1.3	7
188	Quantifying the effects of LUCCs on local temperatures, precipitation, and wind using the WRF model. Environmental Monitoring and Assessment, 2017, 189, 501.	1.3	7
189	Climate change and runoff response based on isotope analysis in an arid mountain watershed of the western Kunlun Mountains. Hydrological Sciences Journal, 2017, 62, 319-330.	1.2	7
190	Groundwater dynamic influenced by intense anthropogenic activities in a dried-up river oasis of Central Asia. Hydrology Research, 2022, 53, 532-546.	1.1	7
191	Water Deficit May Cause Vegetation Browning in Central Asia. Remote Sensing, 2022, 14, 2574.	1.8	7
192	The arbuscular mycorrhizal symbiotic status of <i>Populus euphratica</i> , a drought resistant tree species from arid lands. Ecohydrology, 2013, 6, 1001-1008.	1.1	6
193	Large Differences between Glaciers 3D Surface Extents and 2D Planar Areas in Central Tianshan. Water (Switzerland), 2017, 9, 282.	1.2	6
194	Hydrochemical characteristics and evolution of groundwater in the dried-up river oasis of the Tarim Basin, Central Asia. Journal of Arid Land, 2021, 13, 977-994.	0.9	6
195	Environmental hazards in Xinjiang Line of New Eurasian Continental Bridge. Science in China Series D: Earth Sciences, 2002, 45, 35-40.	0.9	5
196	Analysis on the change of water potential of Populus euphratica Oliv. and P. Russkii Jabl under different irrigation volumes in temperate desert zone. Science Bulletin, 2010, 55, 965-972.	1.7	5
197	Ecohydrology of the inland river basins in the Northwestern Arid Region of China. Ecohydrology, 2013, 6, 905-908.	1.1	5
198	Higher Sensitivity of Planted Forests' Productivity Than Natural Forests to Droughts in China. Journal of Geophysical Research G: Biogeosciences, 2021, 126, e2021JG006306.	1.3	5

#	Article	IF	CITATIONS
199	Effects of climate change on major elements of the hydrological cycle in Aksu River basin, northwest China. International Journal of Climatology, 2022, 42, 5359-5372.	1.5	5
200	Seasonal variation of soil respiration under different land use/land cover in arid region. Science in China Series D: Earth Sciences, 2007, 50, 76-85.	0.9	4
201	Historical evolution and the effects of ecological management in Tarim Basin, China. Science Bulletin, 2010, 55, 4097-4103.	1.7	4
202	Topography-Related Glacier Area Changes in Central Tianshan from 1989 to 2015 Derived from Landsat Images and ASTER GDEM Data. Water (Switzerland), 2018, 10, 555.	1.2	4
203	Quantifying the impact of mountain precipitation on runoff in Hotan River, northwestern China. Frontiers of Earth Science, 2020, 14, 568-577.	0.9	4
204	Suitable oasis scales under a government plan in the Kaidu-Konqi River Basin of northwest arid region, China. PeerJ, 2018, 6, e4943.	0.9	4
205	Identifying water vapor sources of precipitation in forest and grassland in the north slope of the Tianshan Mountains, Central Asia. Journal of Arid Land, 2022, 14, 297-309.	0.9	4
206	Study on the model for predicting soil erosion and its application in arid area. Chinese Geographical Science, 1999, 9, 373-376.	1.2	3
207	Reconstruction and analysis of the past five centuries of streamflow on northern slopes on Tianshan Mountains in Northern Xinjiang, China. Theoretical and Applied Climatology, 2017, 129, 177-184.	1.3	3
208	Spatial patterns of vegetation carbon sinks and sources dataset in Central Asia. Data in Brief, 2020, 32, 106200.	0.5	3
209	Research on Population Development in Ethnic Minority Areas in the Context of China's Population Strategy Adjustment. Sustainability, 2020, 12, 8021.	1.6	3
210	Characteristics of Plant Community and Its Relationship with Groundwater Depth of the Desert Riparian Zone in the Lower Reaches of the Ugan River, Northwest China. Water (Switzerland), 2022, 14, 1663.	1.2	3
211	Physio-ecological response of Haloxylon persicum photosynthetic shoots to drought stress. Frontiers of Forestry in China: Selected Publications From Chinese Universities, 2006, 1, 176-181.	0.2	2
212	Error assessment of grid-based diffuse solar radiation models. International Journal of Geographical Information Science, 0, , 1-18.	2.2	2
213	Discussion of an environmental depletion assessment method–A case study in Xinjiang, China. PLoS ONE, 2022, 17, e0262092.	1.1	2
214	Research on Vegetation Coverage Dynamics and Prediction in the Taitema Lake Region. Water (Switzerland), 2022, 14, 725.	1.2	2
215	Simulating the climate driven runoff in data-scarce mountains by machine learning and downscaling reanalysis data. Stochastic Environmental Research and Risk Assessment, 2022, 36, 3819-3834.	1.9	2
216	Water transport and water use efficiency differ among Populus euphratica Oliv. saplings exposed to saline water irrigation. Journal of Arid Land, 2019, 11, 866-879.	0.9	1

#	Article	IF	CITATIONS
217	Modeling the Near-Surface Energies and Water Vapor Fluxes Behavior in Response to Summer Canopy Density across Yanqi Endorheic Basin, Northwestern China. Remote Sensing, 2021, 13, 3764.	1.8	0