
Jayanth Panyam

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6537837/publications.pdf Version: 2024-02-01

Ιλνλνιτή Ολνιγλμ

#	Article	IF	CITATIONS
1	Cancer stem cells and strategies for targeted drug delivery. Drug Delivery and Translational Research, 2021, 11, 1779-1805.	5.8	6
2	Encapsulation of Andrographolide in poly(lactide-co-glycolide) Nanoparticles: Formulation Optimization and in vitro Efficacy Studies. Frontiers in Bioengineering and Biotechnology, 2021, 9, 639409.	4.1	23
3	Novel TLR 7/8 agonists for improving NK cell mediated antibody-dependent cellular cytotoxicity (ADCC). Scientific Reports, 2021, 11, 3346.	3.3	17
4	TLR7/8 Agonist-Loaded Nanoparticles Augment NK Cell-Mediated Antibody-Based Cancer Immunotherapy. Molecular Pharmaceutics, 2020, 17, 2109-2124.	4.6	28
5	Exploiting antibody biology for the treatment of cancer. Immunotherapy, 2020, 12, 255-267.	2.0	7
6	A novel terpenoid class for prevention and treatment of <i>KRAS</i> â€driven cancers: Comprehensive analysis using in situ, in vitro, and in vivo model systems. Molecular Carcinogenesis, 2020, 59, 886-896.	2.7	9
7	Nanoengineering of Mesenchymal Stem Cells via Surface Modification for Efficient Cancer Therapy. Advanced Therapeutics, 2019, 2, 1900043.	3.2	17
8	Perlecan-targeted nanoparticles for drug delivery to triple-negative breast cancer. Future Drug Discovery, 2019, 1, FDD8.	2.1	27
9	Discovery of HSPG2 (Perlecan) as a Therapeutic Target in Triple Negative Breast Cancer. Scientific Reports, 2019, 9, 12492.	3.3	30
10	Chemopreventive efficacy of oral curcumin: a prodrug hypothesis. FASEB Journal, 2019, 33, 9453-9465.	0.5	8
11	Improving Payload Capacity and Anti-Tumor Efficacy of Mesenchymal Stem Cells Using TAT Peptide Functionalized Polymeric Nanoparticles. Cancers, 2019, 11, 491.	3.7	52
12	Intradermal delivery of vaccine nanoparticles using hollow microneedle array generates enhanced and balanced immune response. Journal of Controlled Release, 2019, 294, 268-278.	9.9	114
13	Poly(d,l-lactide-co-glycolide) Nanoparticles as Delivery Platforms for TLR7/8 Agonist-Based Cancer Vaccine. Journal of Pharmacology and Experimental Therapeutics, 2019, 370, 715-724.	2.5	38
14	Combination of Sunitinib and PD-L1 Blockade Enhances Anticancer Efficacy of TLR7/8 Agonist-Based Nanovaccine. Molecular Pharmaceutics, 2019, 16, 1200-1210.	4.6	30
15	Polymeric nanoparticles encapsulating novel TLR7/8 agonists as immunostimulatory adjuvants for enhanced cancer immunotherapy. Biomaterials, 2018, 164, 38-53.	11.4	133
16	Nano-Engineered Mesenchymal Stem Cells Increase Therapeutic Efficacy of Anticancer Drug Through True Active Tumor Targeting. Molecular Cancer Therapeutics, 2018, 17, 1196-1206.	4.1	87
17	Chemopreventive efficacy of curcumin-loaded PLGA microparticles in a transgenic mouse model of HER-2-positive breast cancer. Drug Delivery and Translational Research, 2018, 8, 329-341.	5.8	20
18	Acidic pH-responsive polymer nanoparticles as a TLR7/8 agonist delivery platform for cancer immunotherapy. Nanoscale, 2018, 10, 20851-20862.	5.6	59

JAYANTH PANYAM

#	Article	IF	CITATIONS
19	Inhibition of Chlamydia trachomatis Growth During the Last Decade: A Mini-Review. Mini-Reviews in Medicinal Chemistry, 2018, 18, 1363-1372.	2.4	2
20	Fibrinolytic Enzyme Cotherapy Improves Tumor Perfusion and Therapeutic Efficacy of Anticancer Nanomedicine. Cancer Research, 2017, 77, 1465-1475.	0.9	28
21	Freeze concentration-induced PLGA and polystyrene nanoparticle aggregation: Imaging and rational design of lyoprotection. Journal of Controlled Release, 2017, 248, 125-132.	9.9	27
22	Evaluation of Vaginal Drug Levels and Safety of a Locally Administered Glycerol Monolaurate Cream in Rhesus Macaques. Journal of Pharmaceutical Sciences, 2017, 106, 1821-1827.	3.3	4
23	Polymer-surfactant nanoparticles for improving oral bioavailability of doxorubicin. Journal of Pharmaceutical Investigation, 2017, 47, 65-73.	5.3	21
24	The effects of collagen-rich extracellular matrix on the intracellular delivery of glycol chitosan nanoparticles in human lung fibroblasts. International Journal of Nanomedicine, 2017, Volume 12, 6089-6105.	6.7	22
25	Triptolide suppresses the <i>in vitro</i> and <i>in vivo</i> growth of lung cancer cells by targeting hyaluronan-CD44/RHAMM signaling. Oncotarget, 2017, 8, 26927-26940.	1.8	51
26	Engineering of Anti-CD133 Trispecific Molecule Capable of Inducing NK Expansion and Driving Antibody-Dependent Cell-Mediated Cytotoxicity. Cancer Research and Treatment, 2017, 49, 1140-1152.	3.0	68
27	Honokiol suppresses lung tumorigenesis by targeting EGFR and its downstream effectors. Oncotarget, 2016, 7, 57752-57769.	1.8	27
28	A Pharmacokinetic Model for Quantifying the Effect of Vascular Permeability on the Choice of Drug Carrier: A Framework for Personalized Nanomedicine. Journal of Pharmaceutical Sciences, 2015, 104, 1174-1186.	3.3	14
29	Reformulating Tylocrebrine in Epidermal Growth Factor Receptor Targeted Polymeric Nanoparticles Improves Its Therapeutic Index. Molecular Pharmaceutics, 2015, 12, 2912-2923.	4.6	8
30	Nanoparticles Containing High Loads of Paclitaxel-Silicate Prodrugs: Formulation, Drug Release, and Anticancer Efficacy. Molecular Pharmaceutics, 2015, 12, 4329-4335.	4.6	30
31	Attenuated Salmonella enterica Typhimurium reduces tumor burden in an autochthonous breast cancer model. Anticancer Research, 2015, 35, 843-9.	1.1	6
32	Synthesis, characterization, and evaluation of poly (D,L-lactide-co-glycolide)-based nanoformulation of miRNA-150: potential implications for pancreatic cancer therapy. International Journal of Nanomedicine, 2014, 9, 2933.	6.7	51
33	Intranasal delivery of liposomal indole-3-carbinol improves its pulmonary bioavailability. International Journal of Pharmaceutics, 2014, 477, 96-101.	5.2	13
34	Co-delivery of natural metabolic inhibitors in a self-microemulsifying drug delivery system for improved oral bioavailability of curcumin. Drug Delivery and Translational Research, 2014, 4, 344-352.	5.8	48
35	Silicate Esters of Paclitaxel and Docetaxel: Synthesis, Hydrophobicity, Hydrolytic Stability, Cytotoxicity, and Prodrug Potential. Journal of Medicinal Chemistry, 2014, 57, 2368-2379.	6.4	25
36	Enhanced Photodynamic Therapy and Effective Elimination of Cancer Stem Cells Using Surfactant–Polymer Nanoparticles. Molecular Pharmaceutics, 2014, 11, 3186-3195.	4.6	40

JAYANTH PANYAM

#	Article	IF	CITATIONS
37	Enhancing therapeutic efficacy through designed aggregation of nanoparticles. Biomaterials, 2014, 35, 7860-7869.	11.4	40
38	Cancer stem cells. Drug Delivery and Translational Research, 2013, 3, 111-112.	5.8	1
39	Identification and characterization of a novel scFv recognizing human and mouse CD133. Drug Delivery and Translational Research, 2013, 3, 143-151.	5.8	16
40	Immunotoxin targeting CD133+ breast carcinoma cells. Drug Delivery and Translational Research, 2013, 3, 195-204.	5.8	31
41	CD133-targeted paclitaxel delivery inhibits local tumor recurrence in a mouse model of breast cancer. Journal of Controlled Release, 2013, 171, 280-287.	9.9	168
42	Flash Nanoprecipitation: Particle Structure and Stability. Molecular Pharmaceutics, 2013, 10, 4367-4377.	4.6	119
43	Weighing up gene delivery. Nature Nanotechnology, 2013, 8, 805-806.	31.5	63
44	Exploiting nanotechnology to overcome tumor drug resistance: Challenges and opportunities. Advanced Drug Delivery Reviews, 2013, 65, 1731-1747.	13.7	218
45	Inhalable magnetic nanoparticles for targeted hyperthermia in lung cancer therapy. Biomaterials, 2013, 34, 5163-5171.	11.4	210
46	Effective Elimination of Cancer Stem Cells by Magnetic Hyperthermia. Molecular Pharmaceutics, 2013, 10, 1432-1441.	4.6	84
47	Folic Acid Functionalized Nanoparticles for Enhanced Oral Drug Delivery. Molecular Pharmaceutics, 2012, 9, 2103-2110.	4.6	149
48	Preparation of siRNA-Encapsulated PLGA Nanoparticles for Sustained Release of siRNA and Evaluation of Encapsulation Efficiency. Methods in Molecular Biology, 2012, 906, 311-319.	0.9	25
49	Epithelial Proinflammatory Response and Curcumin-Mediated Protection from Staphylococcal Toxic Shock Syndrome Toxin-1. PLoS ONE, 2012, 7, e32813.	2.5	13
50	Image-guided drug delivery in lung cancer. Drug Delivery and Translational Research, 2012, 2, 31-44.	5.8	2
51	Nanoparticle-mediated p53 gene therapy for tumor inhibition. Drug Delivery and Translational Research, 2011, 1, 43-52.	5.8	27
52	Highly Loaded, Sustained-Release Microparticles of Curcumin for Chemoprevention. Journal of Pharmaceutical Sciences, 2011, 100, 2599-2609.	3.3	63
53	Targeted delivery of antibiotics to intracellular chlamydial infections using PLGA nanoparticles. Biomaterials, 2011, 32, 6606-6613.	11.4	108
54	Nanoparticle-mediated combination chemotherapy and photodynamic therapy overcomes tumor drug resistance. Journal of Controlled Release, 2010, 141, 137-144.	9.9	239

JAYANTH PANYAM

#	Article	IF	CITATIONS
55	Identification of a novel monoclonal antibody recognizing CD133. Journal of Immunological Methods, 2010, 361, 110-115.	1.4	33
56	The use of nanoparticle-mediated targeted gene silencing and drug delivery to overcome tumor drug resistance. Biomaterials, 2010, 31, 358-365.	11.4	287
57	Injectable Sustained Release Microparticles of Curcumin: A New Concept for Cancer Chemoprevention. Cancer Research, 2010, 70, 4443-4452.	0.9	112
58	Interfacial Activity Assisted Surface Functionalization: A Novel Approach To Incorporate Maleimide Functional Groups and cRGD Peptide on Polymeric Nanoparticles for Targeted Drug Delivery. Molecular Pharmaceutics, 2010, 7, 1108-1117.	4.6	47
59	Nanoparticle-mediated simultaneous and targeted delivery of paclitaxel and tariquidar overcomes tumor drug resistance. Journal of Controlled Release, 2009, 136, 21-29.	9.9	297
60	Polymeric nanoparticles for siRNA delivery and gene silencing. International Journal of Pharmaceutics, 2009, 367, 195-203.	5.2	229
61	Single-step surface functionalization of polymeric nanoparticles for targeted drug delivery. Biomaterials, 2009, 30, 859-866.	11.4	212
62	Nanoparticle-mediated combination chemotherapy and photodynamic therapy overcomes tumor drug resistance in vitro. European Journal of Pharmaceutics and Biopharmaceutics, 2009, 71, 214-222.	4.3	118
63	A Review of Select Recent Patents on Novel Nanocarriers. Recent Patents on Drug Delivery and Formulation, 2009, 3, 137-142.	2.1	26
64	Core–shell Particles for the Dispersion of Small Polar Drugs and Biomolecules in Hydrofluoroalkane Propellants. Pharmaceutical Research, 2008, 25, 289-301.	3.5	29
65	Fe\$_{3}\$O\$_{4}\$ Incorporated AOT-Alginate Nanoparticles for Drug Delivery. IEEE Transactions on Magnetics, 2008, 44, 2800-2803.	2.1	17
66	Surfactantâ^'Polymer Nanoparticles Enhance the Effectiveness of Anticancer Photodynamic Therapy. Molecular Pharmaceutics, 2008, 5, 795-807.	4.6	96
67	Incorporation of Phospholipids Enhances Cellular Uptake and Retention of Surfactant-Polymer Nanoparticles. Journal of Biomedical Nanotechnology, 2007, 3, 291-296.	1.1	6
68	Surfactant–Polymer Nanoparticles Overcome P-Glycoprotein-Mediated Drug Efflux. Molecular Pharmaceutics, 2007, 4, 730-738.	4.6	102
69	Polymerâ€surfactant nanoparticles for sustained release of waterâ€soluble drugs. Journal of Pharmaceutical Sciences, 2007, 96, 3379-3389.	3.3	91
70	Surfactant-polymer Nanoparticles: A Novel Platform for Sustained and Enhanced Cellular Delivery of Water-soluble Molecules. Pharmaceutical Research, 2007, 24, 803-810.	3.5	94
71	Phospholipid Nanoparticles: Process Optimization Using Factorial Design and Atomic Force Microscopy. Journal of Biomedical Nanotechnology, 2007, 3, 394-400.	1.1	1
72	Susceptibility of nanoparticle-encapsulated paclitaxel to P-glycoprotein-mediated drug efflux. International Journal of Pharmaceutics, 2006, 320, 150-156.	5.2	117

Jayanth Panyam

#	Article	IF	CITATIONS
73	Nanoparticles for Cellular Drug Delivery: Mechanisms and Factors Influencing Delivery. Journal of Nanoscience and Nanotechnology, 2006, 6, 2651-2663.	0.9	142
74	Solidâ€state Solubility Influences Encapsulation and Release of Hydrophobic Drugs from PLGA/PLA Nanoparticles. Journal of Pharmaceutical Sciences, 2004, 93, 1804-1814.	3.3	249
75	Sustained Cytoplasmic Delivery of Drugs with Intracellular Receptors Using Biodegradable Nanoparticles. Molecular Pharmaceutics, 2004, 1, 77-84.	4.6	166
76	Targeting Intracellular Targets. Current Drug Delivery, 2004, 1, 235-247.	1.6	80
77	Dynamics of endocytosis and exocytosis of poly(D,L-lactide-co-glycolide) nanoparticles in vascular smooth muscle cells. Pharmaceutical Research, 2003, 20, 212-220.	3.5	420
78	Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Advanced Drug Delivery Reviews, 2003, 55, 329-347.	13.7	2,892
79	Polymer degradation and in vitro release of a model protein from poly(d,l-lactide-co-glycolide) nano- and microparticles. Journal of Controlled Release, 2003, 92, 173-187.	9.9	446
80	Fluorescence and electron microscopy probes for cellular and tissue uptake of poly(d,l-lactide-co-glycolide) nanoparticles. International Journal of Pharmaceutics, 2003, 262, 1-11.	5.2	285
81	Rapid endoâ€lysosomal escape of poly(DLâ€lactideâ€ <i>co</i> glycolide) nanoparticles: implications for drug and gene delivery. FASEB Journal, 2002, 16, 1217-1226.	0.5	950
82	Residual polyvinyl alcohol associated with poly (d,l-lactide-co-glycolide) nanoparticles affects their physical properties and cellular uptake. Journal of Controlled Release, 2002, 82, 105-114.	9.9	846
83	Size-dependency of nanoparticle-mediated gene transfection: studies with fractionated nanoparticles. International Journal of Pharmaceutics, 2002, 244, 105-115.	5.2	505