Gorana Pobric

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6537711/publications.pdf

Version: 2024-02-01

516710 477307 2,342 31 16 29 h-index citations g-index papers 34 34 34 2196 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Cognitive and Electrophysiological Correlates of Working Memory Impairments in Neurofibromatosis Type 1. Journal of Autism and Developmental Disorders, 2022, 52, 1478-1494.	2.7	19
2	The effects of transcranial alternating current stimulation on memory performance in healthy adults: A systematic review. Cortex, 2022, 147, 112-139.	2.4	13
3	The Neural Representations of Emotional Experiences Are More Similar Than Those of Neutral Experiences. Journal of Neuroscience, 2022, 42, 2772-2785.	3.6	7
4	Neuroanatomical correlates of working memory performance in Neurofibromatosis 1. Cerebral Cortex Communications, 2022, 3, .	1.6	0
5	Targeted memory reactivation in REM but not SWS selectively reduces arousal responses. Communications Biology, 2021, 4, 404.	4.4	16
6	Interventions for Spatial Neglect After Stroke or Nonprogressive Brain Injury: A Cochrane Systematic Review. Stroke, 2021, 52, e548-e549.	2.0	1
7	Symmetry in Emotional and Visual Similarity between Neutral and Negative Faces. Symmetry, 2021, 13, 2091.	2.2	2
8	Graded, multidimensional intra- and intergroup variations in primary progressive aphasia and post-stroke aphasia. Brain, 2020, 143, 3121-3135.	7.6	31
9	A Response to †Investigating Emotional Similarity: A Comment on Riberto, Pobric and Talmi (2019)'. Brain Topography, 2020, 33, 288-288.	1.8	1
10	The Emotional Facet of Subjective and Neural Indices of Similarity. Brain Topography, 2019, 32, 956-964.	1.8	11
11	Seeing the World as it is: Mimicking Veridical Motion Perception in Schizophrenia Using Non-invasive Brain Stimulation in Healthy Participants. Brain Topography, 2018, 31, 827-837.	1.8	4
12	Laterality of anterior temporal lobe repetitive transcranial magnetic stimulation determines the degree of disruption in picture naming. Brain Structure and Function, 2017, 222, 3749-3759.	2.3	16
13	Facilitation of Function and Manipulation Knowledge of Tools Using Transcranial Direct Current Stimulation (tDCS). Frontiers in Integrative Neuroscience, 2017, 11, 37.	2.1	7
14	The neural network for tool-related cognition: An activation likelihood estimation meta-analysis of 70 neuroimaging contrasts. Cognitive Neuropsychology, 2016, 33, 241-256.	1.1	74
15	Hemispheric Specialization within the Superior Anterior Temporal Cortex for Social and Nonsocial Concepts. Journal of Cognitive Neuroscience, 2016, 28, 351-360.	2.3	54
16	The Semantic Network at Work and Rest: Differential Connectivity of Anterior Temporal Lobe Subregions. Journal of Neuroscience, 2016, 36, 1490-1501.	3.6	212
17	Seeing the world as it is: veridical motion perception in schizophrenia and effects of non-invasive transcranial electric stimulation. Journal of Vision, 2016, 16, 888.	0.3	0
18	The Timing of Anterior Temporal Lobe Involvement in Semantic Processing. Journal of Cognitive Neuroscience, 2015, 27, 1388-1396.	2.3	42

#	Article	IF	CITATIONS
19	The Nature and Neural Correlates of Semantic Association versus Conceptual Similarity. Cerebral Cortex, 2015, 25, 4319-4333.	2.9	82
20	Posterior middle temporal gyrus is involved in verbal and non-verbal semantic cognition: Evidence from rTMS. Aphasiology, 2012, 26, 1119-1130.	2.2	59
21	Different roles of lateral anterior temporal lobe and inferior parietal lobule in coding function and manipulation tool knowledge: Evidence from an rTMS study. Neuropsychologia, 2011, 49, 1128-1135.	1.6	89
22	Amodal semantic representations depend on both anterior temporal lobes: Evidence from repetitive transcranial magnetic stimulation. Neuropsychologia, 2010, 48, 1336-1342.	1.6	210
23	Category-Specific versus Category-General Semantic Impairment Induced by Transcranial Magnetic Stimulation. Current Biology, 2010, 20, 964-968.	3.9	244
24	Induction of semantic impairments using rTMS: evidence for the hub-and-spoke semantic theory. Behavioural Neurology, 2010, 23, 217-9.	2.1	4
25	Conceptual Knowledge Is Underpinned by the Temporal Pole Bilaterally: Convergent Evidence from rTMS. Cerebral Cortex, 2009, 19, 832-838.	2.9	282
26	The role of the anterior temporal lobes in the comprehension of concrete and abstract words: rTMS evidence. Cortex, 2009, 45, 1104-1110.	2.4	106
27	The Role of the Right Cerebral Hemisphere in Processing Novel Metaphoric Expressions: A Transcranial Magnetic Stimulation Study. Journal of Cognitive Neuroscience, 2008, 20, 170-181.	2.3	119
28	Functional Representation of Living and Nonliving Domains across the Cerebral Hemispheres: A Combined Event-related Potential/Transcranial Magnetic Stimulation Study. Journal of Cognitive Neuroscience, 2008, 21, 403-414.	2.3	39
29	Magnetic Stimulation of the Right Visual Cortex Impairs Form-specific Priming. Journal of Cognitive Neuroscience, 2007, 19, 1013-1020.	2.3	5
30	Anterior temporal lobes mediate semantic representation: Mimicking semantic dementia by using rTMS in normal participants. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 20137-20141.	7.1	366
31	Action Understanding Requires the Left Inferior Frontal Cortex. Current Biology, 2006, 16, 524-529.	3.9	220