Manuela Winkler

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6537710/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Accelerated increase in plant species richness on mountain summits is linked to warming. Nature, 2018, 556, 231-234.	27.8	580
2	Genetic consequences of Pleistocene range shifts: contrast between the Arctic, the Alps and the East African mountains. Molecular Ecology, 2007, 16, 2542-2559.	3.9	183
3	Assessment of climate change effects on mountain ecosystems through a cross-site analysis in the Alps and Apennines. Science of the Total Environment, 2018, 624, 1429-1442.	8.0	169
4	History or ecology? Substrate type as a major driver of patial genetic structure in Alpine plants. Ecology Letters, 2009, 12, 632-640.	6.4	167
5	Climate change leads to accelerated transformation of highâ€elevation vegetation in the central Alps. New Phytologist, 2018, 220, 447-459.	7.3	143
6	Genetic diversity in widespread species is not congruent with species richness in alpine plant communities. Ecology Letters, 2012, 15, 1439-1448.	6.4	135
7	SoilTemp: A global database of nearâ€surface temperature. Global Change Biology, 2020, 26, 6616-6629.	9.5	122
8	Effect of Canopy Position on Germination and Seedling Survival of Epiphytic Bromeliads in a Mexican Humid Montane Forest. Annals of Botany, 2005, 95, 1039-1047.	2.9	108
9	The rich sides of mountain summits – a panâ€European view on aspect preferences of alpine plants. Journal of Biogeography, 2016, 43, 2261-2273.	3.0	107
10	Correlations of polyploidy and apomixis with elevation and associated environmental gradients in an alpine plant. AoB PLANTS, 2016, 8, .	2.3	102
11	Historical divergence vs. contemporary gene flow: evolutionary history of the calcicole <i>Ranunculus alpestris</i> group (Ranunculaceae) in the European Alps and the Carpathians. Molecular Ecology, 2008, 17, 4263-4275.	3.9	98
12	Intraseasonal climate and habitatâ€specific variability controls the flowering phenology of high alpine plant species. Functional Ecology, 2010, 24, 245-252.	3.6	95
13	Phenological Responses of Snowbed Species to Snow Removal Dates in the Central Alps: Implications for Climate Warming. Arctic, Antarctic, and Alpine Research, 2006, 38, 99-103.	1.1	84
14	Break zones in the distributions of alleles and species in alpine plants. Journal of Biogeography, 2011, 38, 772-782.	3.0	77
15	A matter of scale: apparent niche differentiation of diploid and tetraploid plants may depend on extent and grain of analysis. Journal of Biogeography, 2016, 43, 716-726.	3.0	73
16	A new individual-based spatial approach for identifying genetic discontinuities in natural populations. Molecular Ecology, 2007, 16, 2031-2043.	3.9	72
17	Effects of species traits on the genetic diversity of highâ€mountain plants: a multiâ€species study across the Alps and the Carpathians. Global Ecology and Biogeography, 2009, 18, 78-87.	5.8	62

Ecological differentiation, lack of hybrids involving diploids, and asymmetric gene flow between polyploids in narrow contact zones of <i>Senecio carniolicus</i> (syn. <i>Jacobaea carniolica</i>,) Tj ETQq0 0 0 rgBIgOverlocd# 10 Tf 50

MANUELA WINKLER

#	Article	IF	CITATIONS
19	Tales of the unexpected: Phylogeography of the arcticâ€alpine model plant <i>Saxifraga oppositifolia</i> (Saxifragaceae) revisited. Molecular Ecology, 2012, 21, 4618-4630.	3.9	52
20	GrassPlot – a database of multi-scale plant diversity in Palaearctic grasslands. Phytocoenologia, 2018, 48, 331-347.	0.5	49
21	Population dynamics of epiphytic orchids in a metapopulation context. Annals of Botany, 2009, 104, 995-1004.	2.9	45
22	Extensive range persistence in peripheral and interior refugia characterizes Pleistocene range dynamics in a widespread Alpine plant species (<i>Senecio carniolicus</i> , Asteraceae). Molecular Ecology, 2012, 21, 1255-1270.	3.9	44
23	Species–area relationships in continuous vegetation: Evidence from Palaearctic grasslands. Journal of Biogeography, 2020, 47, 72-86.	3.0	42
24	Parental Ploidy Strongly Affects Offspring Fitness in Heteroploid Crosses among Three Cytotypes of Autopolyploid Jacobaea carniolica (Asteraceae). PLoS ONE, 2013, 8, e78959.	2.5	42
25	Population dynamics of epiphytic bromeliads: Life strategies and the role of host branches. Basic and Applied Ecology, 2007, 8, 183-196.	2.7	41
26	Uncertainty in predicting range dynamics of endemic alpine plants under climate warming. Global Change Biology, 2016, 22, 2608-2619.	9.5	40
27	Directional turnover towards largerâ€ranged plants over time and across habitats. Ecology Letters, 2022, 25, 466-482.	6.4	39
28	Herbivory in epiphytic bromeliads, orchids and ferns in a Mexican montane forest. Journal of Tropical Ecology, 2005, 21, 147-154.	1.1	34
29	Benchmarking plant diversity of Palaearctic grasslands and other open habitats. Journal of Vegetation Science, 2021, 32, e13050.	2.2	34
30	Polyploidisation and Geographic Differentiation Drive Diversification in a European High Mountain Plant Group (Doronicum clusii Aggregate, Asteraceae). PLoS ONE, 2015, 10, e0118197.	2.5	28
31	Pleistocene distribution range shifts were accompanied by breeding system divergence within Hornungia alpina (Brassicaceae) in the Alps. Molecular Phylogenetics and Evolution, 2010, 54, 571-582.	2.7	26
32	Ecological differentiation of diploid and polyploid cytotypes ofSenecio carniolicus sensu lato(Asteraceae) is stronger in areas of sympatry. Annals of Botany, 2015, 117, mcv176.	2.9	26
33	Changes in plant diversity in a water-limited and isolated high-mountain range (Sierra Nevada, Spain). Alpine Botany, 2021, 131, 27-39.	2.4	25
34	Underestimated diversity in one of the world's best studied mountain ranges: The polyploid complex of Senecio carniolicus (Asteraceae) contains four species in the European Alps. Phytotaxa, 2015, 213, 1.	0.3	24
35	Dieback and expansions: species-specific responses during 20Âyears of amplified warming in the high Alps. Alpine Botany, 2020, 130, 1-11.	2.4	24
36	Secondary contact after divergence in allopatry explains current lack of ecogeographical isolation in two hybridizing alpine plant species. Journal of Biogeography, 2017, 44, 2575-2584.	3.0	23

MANUELA WINKLER

#	ARTICLE	IF	CITATIONS
37	Postâ€glacial determinants of regional species pools in alpine grasslands. Global Ecology and Biogeography, 2021, 30, 1101-1115.	5.8	22
38	Seedling establishment of epiphytic orchids in forests and coffee plantations in Central Veracruz, Mexico. Journal of Tropical Ecology, 2010, 26, 93-102.	1.1	21
39	Side by side? Vascular plant, invertebrate, and microorganism distribution patterns along an alpine to nival elevation gradient. Arctic, Antarctic, and Alpine Research, 2018, 50, .	1.1	21
40	Germination of Epiphytic Bromeliads in Forests and Coffee Plantations: Microclimate and Substrate Effects. Biotropica, 2012, 44, 197-204.	1.6	19
41	Disentangling observer error and climate change effects in longâ€term monitoring of alpine plant species composition and cover. Journal of Vegetation Science, 2020, 31, 14-25.	2.2	19
42	Fineâ€grain beta diversity of Palaearctic grassland vegetation. Journal of Vegetation Science, 2021, 32, e13045.	2.2	18
43	Strong nuclear differentiation contrasts with widespread sharing of plastid DNA haplotypes across taxa in European purple saxifrages (<i>Saxifraga</i> section <i>Porphyrion</i> subsection <i>Oppositifoliae</i>). Botanical Journal of the Linnean Society. 2013. 173. 622-636.	1.6	16
44	A novel method to infer the origin of polyploids from Amplified Fragment Length Polymorphism data reveals that the alpine polyploid complex of <i>Senecio carniolicus</i> (Asteraceae) evolved mainly via autopolyploidy. Molecular Ecology Resources, 2017, 17, 877-892.	4.8	16
45	High gene flow in epiphytic ferns despite habitat loss and fragmentation. Conservation Genetics, 2011, 12, 1411-1420.	1.5	14
46	A common soil temperature threshold for the upper limit of alpine grasslands in European mountains. Alpine Botany, 2021, 131, 41-52.	2.4	13
47	Recent changes in high-mountain plant community functional composition in contrasting climate regimes. Science of the Total Environment, 2022, 829, 154541.	8.0	9
48	Massive introgression weakens boundaries between a regionally endemic allopolyploid and a widespread congener. Perspectives in Plant Ecology, Evolution and Systematics, 2020, 42, 125502.	2.7	6
49	Survival and Growth of Juvenile Bromeliads in Coffee Plantations and Forests in <scp>C</scp> entral <scp>V</scp> eracruz, <scp>M</scp> exico. Biotropica, 2012, 44, 341-349.	1.6	4
50	Reciprocal transplantations reveal strong niche differentiation among ploidy-differentiated species of the Senecio carniolicus aggregate (Asteraceae) in the easternmost Alps. Alpine Botany, 2018, 128, 107-119.	2.4	4
51	Using automated vegetation cover estimation from close-range photogrammetric point clouds to compare vegetation location properties in mountain terrain. GIScience and Remote Sensing, 2021, 58, 120-137.	5.9	4
52	MAPPING ALPINE VEGETATION LOCATION PROPERTIES BY DENSE MATCHING. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 0, XLI-B5, 881-886.	0.2	1
53	Power games cause sparks in physics, but biologists have learnt from evolution. Nature, 2006, 439, 18-18.	27.8	0