A Di Francesco

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6537639/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Application of <i>Aureobasidium pullulans</i> in ironâ€poor soil. Can the production of siderophores improve iron bioavailability and yeast antagonistic activity?. Annals of Applied Biology, 2022, 180, 398-406.	2.5	6
2	Heat treatment effect on <i>Cadophora luteoâ€olivacea</i> of kiwifruit. Plant Pathology, 2022, 71, 644-653.	2.4	1
3	Apple pathogens: Organic essential oils as an alternative solution. Scientia Horticulturae, 2022, 300, 111075.	3.6	9
4	Ripe indexes, hot water treatments, and biocontrol agents as synergistic combination to control apple bull's eye rot. Biocontrol Science and Technology, 2022, 32, 1016-1026.	1.3	2
5	Preliminary results on Cadophora luteo-olivacea pathogenicity aspects on kiwifruit. European Journal of Plant Pathology, 2022, 163, 997-1001.	1.7	4
6	Biocontrol Activity and Plant Growth Promotion Exerted by Aureobasidium pullulans Strains. Journal of Plant Growth Regulation, 2021, 40, 1233-1244.	5.1	20
7	How siderophore production can influence the biocontrol activity of Aureobasidium pullulans against Monilinia laxa on peaches. Biological Control, 2021, 152, 104456.	3.0	18
8	Post-Harvest Non-Conventional and Traditional Methods to Control Cadophora luteo-olivacea: Skin Pitting Agent of Actinidia chinensis var. deliciosa (A. Chev.). Horticulturae, 2021, 7, 169.	2.8	8
9	Aureobasidium pullulans volatile organic compounds as alternative postharvest method to control brown rot of stone fruits. Food Microbiology, 2020, 87, 103395.	4.2	49
10	Study of the efficacy of <i>Aureobasidium</i> strains belonging to three different species: <i>A</i> . <scp><i>pullulans</i></scp> , <i>A. subglaciale</i> and <i>A. melanogenum</i> against <i>Botrytis cinerea</i> of tomato. Annals of Applied Biology, 2020, 177, 266-275.	2.5	16
11	Bioactivity of volatile organic compounds by Aureobasidium species against gray mold of tomato and table grape. World Journal of Microbiology and Biotechnology, 2020, 36, 171.	3.6	27
12	Effect of innovative pre-treatments on the mitigation of acrylamide formation in potato chips. Innovative Food Science and Emerging Technologies, 2020, 64, 102397.	5.6	31
13	Characterization of apple cultivar susceptibility to Neofusicoccum parvum Brazilian strains. European Journal of Plant Pathology, 2020, 156, 939-951.	1.7	7
14	Biological Control of Postharvest Diseases by Microbial Antagonists. Progress in Biological Control, 2020, , 243-261.	0.5	2
15	Effect of apple cultivars and storage periods on the virulence of <i>Neofabraea</i> spp Plant Pathology, 2019, 68, 1525-1532.	2.4	13
16	Potential for biocontrol of Pleurotus ostreatus green mould disease by Aureobasidium pullulans De Bary (Arnaud). Biological Control, 2019, 135, 9-15.	3.0	10
17	An emerging problem affecting apple production: Neofusicoccum parvum. Aureobasidium pullulans L1 and L8 strains as an alternative control strategy. Biological Control, 2019, 134, 157-162.	3.0	9
18	Brassica mealâ€derived allylâ€isothiocyanate postharvest application: influence on strawberry nutraceutical and biochemical parameters. Journal of the Science of Food and Agriculture, 2019, 99, 4235-4241.	3.5	11

A DI FRANCESCO

#	Article	IF	CITATIONS
19	Reduction of acrylamide formation in fried potato chips by Aureobasidum pullulans L1 strain. International Journal of Food Microbiology, 2019, 289, 168-173.	4.7	17
20	Defense response against postharvest pathogens in hot water treated apples. Scientia Horticulturae, 2018, 227, 181-186.	3.6	23
21	Effect of Aureobasidium pullulans strains against Botrytis cinerea on kiwifruit during storage and on fruit nutritional composition. Food Microbiology, 2018, 72, 67-72.	4.2	44
22	Molecular characterization of the two postharvest biological control agents Aureobasidium pullulans L1 and L8. Biological Control, 2018, 123, 53-59.	3.0	23
23	Postharvest application of brassica meal-derived allyl-isothiocyanate to kiwifruit: effect on fruit quality, nutraceutical parameters and physiological response. Journal of Food Science and Technology, 2017, 54, 751-760.	2.8	14
24	Biocontrol of Monilinia laxa by Aureobasidium pullulans strains: Insights on competition for nutrients and space. International Journal of Food Microbiology, 2017, 248, 32-38.	4.7	70
25	Antifungal effect of volatile organic compounds produced by Bacillus amyloliquefaciens CPA-8 against fruit pathogen decays of cherry. Food Microbiology, 2017, 64, 219-225.	4.2	135
26	A preliminary investigation into Aureobasidium pullulans as a potential biocontrol agent against Phytophthora infestans of tomato. Biological Control, 2017, 114, 144-149.	3.0	26
27	Biological control of postharvest diseases by microbial antagonists: how many mechanisms of action?. European Journal of Plant Pathology, 2016, 145, 711-717.	1.7	117
28	First Report of Asiatic Brown Rot (<i>Monilinia polystroma</i>) and Brown Rot (<i>Monilinia) Tj ETQq0 0 0 rgBT</i>	Overlock	10 Tf 50 382

29	Activities of Aureobasidium pullulans cell filtrates against Monilinia laxa of peaches. Microbiological Research, 2015, 181, 61-67.	5.3	28
30	Production of volatile organic compounds by Aureobasidium pullulans as a potential mechanism of action against postharvest fruit pathogens. Biological Control, 2015, 81, 8-14.	3.0	184
31	First Report of Asiatic Brown Rot (<i>Monilinia polystroma</i>) on Apple in Croatia. Plant Disease, 2015, 99, 1181.	1.4	7
32	First Report of Asiatic Brown Rot Caused by <i>Monilinia polystroma</i> on Peach in Italy. Plant Disease, 2014, 98, 1585-1585.	1.4	21