Min Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6537524/publications.pdf Version: 2024-02-01

MIN CHEN

#	Article	IF	CITATIONS
1	Highly stable and efficient all-inorganic lead-free perovskite solar cells with native-oxide passivation. Nature Communications, 2019, 10, 16.	5.8	430
2	Cesium Titanium(IV) Bromide Thin Films Based Stable Lead-free Perovskite Solar Cells. Joule, 2018, 2, 558-570.	11.7	403
3	Earth-Abundant Nontoxic Titanium(IV)-based Vacancy-Ordered Double Perovskite Halides with Tunable 1.0 to 1.8 eV Bandgaps for Photovoltaic Applications. ACS Energy Letters, 2018, 3, 297-304.	8.8	314
4	Interfacial toughening with self-assembled monolayers enhances perovskite solar cell reliability. Science, 2021, 372, 618-622.	6.0	313
5	Toward Eco-friendly and Stable Perovskite Materials for Photovoltaics. Joule, 2018, 2, 1231-1241.	11.7	224
6	Interpenetrating interfaces for efficient perovskite solar cells with high operational stability and mechanical robustness. Nature Communications, 2021, 12, 973.	5.8	189
7	Continuous Grain-Boundary Functionalization for High-Efficiency Perovskite Solar Cells with Exceptional Stability. CheM, 2018, 4, 1404-1415.	5.8	165
8	Doping and alloying for improved perovskite solar cells. Journal of Materials Chemistry A, 2016, 4, 17623-17635.	5.2	157
9	Flexible perovskite solar cells with simultaneously improved efficiency, operational stability, and mechanical reliability. Joule, 2021, 5, 1587-1601.	11.7	120
10	Lead-Free Dion–Jacobson Tin Halide Perovskites for Photovoltaics. ACS Energy Letters, 2019, 4, 276-277.	8.8	101
11	Improved SnO ₂ Electron Transport Layers Solutionâ€Deposited at Near Room Temperature for Rigid or Flexible Perovskite Solar Cells with High Efficiencies. Advanced Energy Materials, 2019, 9, 1900834.	10.2	100
12	High-Performance Lead-Free Solar Cells Based on Tin-Halide Perovskite Thin Films Functionalized by a Divalent Organic Cation. ACS Energy Letters, 2020, 5, 2223-2230.	8.8	96
13	Lewisâ€Adduct Mediated Grainâ€Boundary Functionalization for Efficient Idealâ€Bandgap Perovskite Solar Cells with Superior Stability. Advanced Energy Materials, 2018, 8, 1800997.	10.2	93
14	Carrier lifetime enhancement in halide perovskite via remote epitaxy. Nature Communications, 2019, 10, 4145.	5.8	93
15	Sub-1.4eV bandgap inorganic perovskite solar cells with long-term stability. Nature Communications, 2020, 11, 151.	5.8	92
16	Subgrain Special Boundaries in Halide Perovskite Thin Films Restrict Carrier Diffusion. ACS Energy Letters, 2018, 3, 2669-2670.	8.8	68
17	Fusing Nanowires into Thin Films: Fabrication of Gradedâ€Heterojunction Perovskite Solar Cells with Enhanced Performance. Advanced Energy Materials, 2019, 9, 1900243.	10.2	45
18	Enhanced Thermoelectric Performance in Lead-Free Inorganic CsSn _{1<i>–x</i>} Ge _{<i>x</i>} I ₃ Perovskite Semiconductors. Journal of Physical Chemistry C, 2020, 124, 11749-11753.	1.5	45

Min Chen

#	Article	IF	CITATIONS
19	Encapsulated X-Ray Detector Enabled by All-Inorganic Lead-Free Perovskite Film With High Sensitivity and Low Detection Limit. IEEE Transactions on Electron Devices, 2020, 67, 3191-3198.	1.6	40
20	Light-Driven Overall Water Splitting Enabled by a Photo-Dember Effect Realized on 3D Plasmonic Structures. ACS Nano, 2016, 10, 6693-6701.	7.3	39
21	CNT-based bifacial perovskite solar cells toward highly efficient 4-terminal tandem photovoltaics. Energy and Environmental Science, 2022, 15, 1536-1544.	15.6	39
22	Asymmetric alkyl diamine based Dion–Jacobson low-dimensional perovskite solar cells with efficiency exceeding 15%. Journal of Materials Chemistry A, 2020, 8, 9919-9926.	5.2	38
23	A polar-hydrophobic ionic liquid induces grain growth and stabilization in halide perovskites. Chemical Communications, 2019, 55, 11059-11062.	2.2	35
24	The Synergism of DMSO and Diethyl Ether for Highly Reproducible and Efficient MA _{0.5} FA _{0.5} PbI ₃ Perovskite Solar Cells. Advanced Energy Materials, 2020, 10, 2001300.	10.2	33
25	Effect of Grain Size on the Fracture Behavior of Organic-Inorganic Halide Perovskite Thin Films for Solar Cells. Scripta Materialia, 2020, 185, 47-50.	2.6	32
26	<i>In situ</i> transfer of CH ₃ NH ₃ Pbl ₃ single crystals in mesoporous scaffolds for efficient perovskite solar cells. Chemical Science, 2020, 11, 474-481.	3.7	19
27	High-efficiency perovskite photovoltaic modules achieved via cesium doping. Chemical Engineering Journal, 2022, 431, 133713.	6.6	19
28	Lead-Free Flexible Perovskite Solar Cells with Interfacial Native Oxide Have >10% Efficiency and Simultaneously Enhanced Stability and Reliability. ACS Energy Letters, 2022, 7, 2256-2264.	8.8	19
29	Linking melem with conjugated Schiff-base bonds to boost photocatalytic efficiency of carbon nitride for overall water splitting. Nanoscale, 2021, 13, 9315-9321.	2.8	17
30	Electron-beam-induced cracking in organic-inorganic halide perovskite thin films. Scripta Materialia, 2020, 187, 88-92.	2.6	16
31	Photoactivated p-Doping of Organic Interlayer Enables Efficient Perovskite/Silicon Tandem Solar Cells. ACS Energy Letters, 2022, 7, 1987-1993.	8.8	14
32	Kinetics of Gas Phase CO ₂ Adsorption on Bituminous Coal from a Shallow Coal Seam. Energy & Fuels, 2022, 36, 8360-8370.	2.5	13
33	Evaluation of the hydrology of the IBIS land surface model in a semiâ€arid catchment. Hydrological Processes, 2015, 29, 653-670.	1.1	9
34	Real-Time Investigation of Sn(II) Oxidation in Pb-Free Halide Perovskites by X-ray Absorption and M¶ssbauer Spectroscopy. ACS Applied Energy Materials, 2021, 4, 4327-4332.	2.5	9
35	Numerical Analysis of Improvements to CO2 Injectivity in Coal Seams Through Stimulated Fracture Connection to the Injection Well. Rock Mechanics and Rock Engineering, 2020, 53, 2887-2906.	2.6	8
36	Delineation and Passivation of Grainâ€Boundary Channels in Metal Halide Perovskite Thin Films for Solar Cells. Advanced Materials Interfaces, 2022, 9, .	1.9	4

#	Article	IF	CITATIONS
37	Area-Scalable Zn ₂ SnO ₄ Electron Transport Layer for Highly Efficient and Stable Perovskite Solar Modules. ACS Applied Materials & Interfaces, 2022, 14, 23297-23306.	4.0	4