Weijuan Huang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6537320/publications.pdf Version: 2024-02-01

WEILLAN HUANC

#	Article	IF	CITATIONS
1	Single-emission dual-enzyme magnetosensor for multiplex immunofluorometric assay of adulterated colorants in chili seasoning. Food Chemistry, 2022, 366, 130594.	4.2	8
2	Develop and characterize thermally reversible transparent gels from pea protein isolate and study the gel formation mechanisms. Food Hydrocolloids, 2022, 125, 107373.	5.6	26
3	One-step programmable electrofabrication of chitosan asymmetric hydrogels with 3D shape deformation. Carbohydrate Polymers, 2022, 277, 118888.	5.1	4
4	Untargeted metabolomics by liquid chromatographyâ€mass spectrometry for food authentication: A review. Comprehensive Reviews in Food Science and Food Safety, 2022, 21, 2455-2488.	5.9	20
5	Pre-treatment by combining atmospheric cold plasma and pH-shifting to prepare pea protein concentrate powders with improved gelling properties. Food Research International, 2022, 154, 111028.	2.9	29
6	Noncompressible Hemostasis and Bone Regeneration Induced by an Absorbable Bioadhesive Selfâ€Healing Hydrogel. Advanced Functional Materials, 2021, 31, 2009189.	7.8	133
7	Strong and elastic pea protein hydrogels formed through pH-shifting method. Food Hydrocolloids, 2021, 117, 106705.	5.6	42
8	Soluble Pea Protein Aggregates Form Strong Gels in the Presence of κ-Carrageenan. ACS Food Science & Technology, 2021, 1, 1605-1614.	1.3	15
9	Fabrication and characterization of lentil protein gels from fibrillar aggregates and the gelling mechanism study. Food and Function, 2020, 11, 10114-10125.	2.1	28
10	Concentrated sulfuric acid aqueous solution enables rapid recycling of cellulose from waste paper into antimicrobial packaging. Carbohydrate Polymers, 2020, 241, 116256.	5.1	21
11	Injectable and Self-Healing Nanocomposite Hydrogels with Ultrasensitive pH-Responsiveness and Tunable Mechanical Properties: Implications for Controlled Drug Delivery. Biomacromolecules, 2020, 21, 2409-2420.	2.6	107
12	Stretchable, tough, self-recoverable, and cytocompatible chitosan/cellulose nanocrystals/polyacrylamide hybrid hydrogels. Carbohydrate Polymers, 2019, 222, 114977.	5.1	44
13	Injectable, Self-Healing Hydrogel with Tunable Optical, Mechanical, and Antimicrobial Properties. Chemistry of Materials, 2019, 31, 2366-2376.	3.2	86
14	On-Demand Dissolvable Self-Healing Hydrogel Based on Carboxymethyl Chitosan and Cellulose Nanocrystal for Deep Partial Thickness Burn Wound Healing. ACS Applied Materials & Interfaces, 2018, 10, 41076-41088.	4.0	351
15	Injectable Self-Healing Hydrogel with Antimicrobial and Antifouling Properties. ACS Applied Materials & Interfaces, 2017, 9, 9221-9225.	4.0	145
16	Quality characteristics of angel food cake and muffin using lentil protein as egg/milk replacer. International Journal of Food Science and Technology, 2017, 52, 1604-1613.	1.3	57
17	Strong and Rapidly Selfâ€Healing Hydrogels: Potential Hemostatic Materials. Advanced Healthcare Materials, 2016, 5, 2813-2822.	3.9	138
18	Rapid dissolution of spruce cellulose in H2SO4 aqueous solution at low temperature. Cellulose, 2016, 23, 3463-3473.	2.4	29