
Juan DomÃ-nguez-Robles

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6537193/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Implantable Polymeric Drug Delivery Devices: Classification, Manufacture, Materials, and Clinical Applications. Polymers, 2018, 10, 1379.	2.0	242
2	Antioxidant PLA Composites Containing Lignin for 3D Printing Applications: A Potential Material for Healthcare Applications. Pharmaceutics, 2019, 11, 165.	2.0	186
3	Synthesis and Characterization of Lignin Hydrogels for Potential Applications as Drug Eluting Antimicrobial Coatings for Medical Materials. ACS Sustainable Chemistry and Engineering, 2018, 6, 9037-9046.	3.2	161
4	Aqueous acetone fractionation of kraft, organosolv and soda lignins. International Journal of Biological Macromolecules, 2018, 106, 979-987.	3.6	150
5	Lignin/poly(butylene succinate) composites with antioxidant and antibacterial properties for potential biomedical applications. International Journal of Biological Macromolecules, 2020, 145, 92-99.	3.6	116
6	Development of a Biodegradable Subcutaneous Implant for Prolonged Drug Delivery Using 3D Printing. Pharmaceutics, 2020, 12, 105.	2.0	109
7	Cellulose Nanofibers and Other Biopolymers for Biomedical Applications. A Review. Applied Sciences (Switzerland), 2020, 10, 65.	1.3	108
8	Hollow microneedles: A perspective in biomedical applications. International Journal of Pharmaceutics, 2021, 599, 120455.	2.6	108
9	Development and characterisation of novel poly (vinyl alcohol)/poly (vinyl pyrrolidone)-based hydrogel-forming microneedle arrays for enhanced and sustained transdermal delivery of methotrexate. International Journal of Pharmaceutics, 2020, 586, 119580.	2.6	101
10	Lignin-based hydrogels with "super-swelling―capacities for dye removal. International Journal of Biological Macromolecules, 2018, 115, 1249-1259.	3.6	99
11	3D Printing of Drug-Loaded Thermoplastic Polyurethane Meshes: A Potential Material for Soft Tissue Reinforcement in Vaginal Surgery. Pharmaceutics, 2020, 12, 63.	2.0	92
12	Additive Manufacturing Can Assist in the Fight Against COVID-19 and Other Pandemics and Impact on the Global Supply Chain. 3D Printing and Additive Manufacturing, 2020, 7, 100-103.	1.4	88
13	Isolation and characterization of lignocellulose nanofibers from different wheat straw pulps. International Journal of Biological Macromolecules, 2016, 92, 1025-1033.	3.6	86
14	A comparative study of the suitability of different cereal straws for lignocellulose nanofibers isolation. International Journal of Biological Macromolecules, 2017, 103, 990-999.	3.6	76
15	Versatility of hydrogel-forming microneedles in in vitro transdermal delivery of tuberculosis drugs. European Journal of Pharmaceutics and Biopharmaceutics, 2021, 158, 294-312.	2.0	72
16	Fused Deposition Modeling as an Effective Tool for Anti-Infective Dialysis Catheter Fabrication. ACS Biomaterials Science and Engineering, 2019, 5, 6300-6310.	2.6	60
17	Poly(caprolactone)-Based Coatings on 3D-Printed Biodegradable Implants: A Novel Strategy to Prolong Delivery of Hydrophilic Drugs. Molecular Pharmaceutics, 2020, 17, 3487-3500.	2.3	60
18	Isolation and characterization of lignins from wheat straw: Application as binder in lithium batteries. International Journal of Biological Macromolecules, 2017, 104, 909-918.	3.6	59

#	Article	IF	CITATIONS
19	Approaching a new generation of fiberboards taking advantage of self lignin as green adhesive. International Journal of Biological Macromolecules, 2018, 108, 927-935.	3.6	56
20	Dissolving microneedle patches loaded with amphotericin B microparticles for localised and sustained intradermal delivery: Potential for enhanced treatment of cutaneous fungal infections. Journal of Controlled Release, 2021, 339, 361-380.	4.8	52
21	Wearable hollow microneedle sensing patches for the transdermal electrochemical monitoring of glucose. Talanta, 2022, 249, 123695.	2.9	50
22	The suitability of banana leaf residue as raw material for the production of high lignin content micro/nano fibers: From residue to value-added products. Industrial Crops and Products, 2017, 99, 27-33.	2.5	48
23	Isolation and Characterization of Gramineae and Fabaceae Soda Lignins. International Journal of Molecular Sciences, 2017, 18, 327.	1.8	48
24	Enhancing intradermal delivery of tofacitinib citrate: Comparison between powder-loaded hollow microneedle arrays and dissolving microneedle arrays. International Journal of Pharmaceutics, 2021, 593, 120152.	2.6	48
25	Fused deposition modelling for the development of drug loaded cardiovascular prosthesis. International Journal of Pharmaceutics, 2021, 595, 120243.	2.6	47
26	Hydrogel-forming microneedles for rapid and efficient skin deposition of controlled release tip-implants. Materials Science and Engineering C, 2021, 127, 112226.	3.8	45
27	3D printed estradiol-eluting urogynecological mesh implants: Influence of material and mesh geometry on their mechanical properties. International Journal of Pharmaceutics, 2021, 593, 120145.	2.6	42
28	Biorefinery Process Combining Specel® Process and Selective Lignin Precipitation using Mineral Acids. BioResources, 2016, 11, .	0.5	40
29	The effect of pre-treatment on the production of lignocellulosic nanofibers and their application as a reinforcing agent in paper. Cellulose, 2017, 24, 2605-2618.	2.4	39
30	Lignin and Cellulose Blends as Pharmaceutical Excipient for Tablet Manufacturing via Direct Compression. Biomolecules, 2019, 9, 423.	1.8	39
31	Lignin for pharmaceutical and biomedical applications – Could this become a reality?. Sustainable Chemistry and Pharmacy, 2020, 18, 100320.	1.6	37
32	Development of drug loaded cardiovascular prosthesis for thrombosis prevention using 3D printing. Materials Science and Engineering C, 2021, 129, 112375.	3.8	37
33	Rapidly growing vegetables as new sources for lignocellulose nanofibre isolation: Physicochemical, thermal and rheological characterisation. Carbohydrate Polymers, 2017, 175, 27-37.	5.1	36
34	The role of microneedle arrays in drug delivery and patient monitoring to prevent diabetes induced fibrosis. Advanced Drug Delivery Reviews, 2021, 175, 113825.	6.6	36
35	Fused Deposition Modelling as a Potential Tool for Antimicrobial Dialysis Catheters Manufacturing: New Trends vs. Conventional Approaches. Coatings, 2019, 9, 515.	1.2	31
36	Urogynecological surgical mesh implants: New trends in materials, manufacturing and therapeutic approaches. International Journal of Pharmaceutics, 2020, 585, 119512.	2.6	25

Juan DomÃnguez-Robles

#	Article	IF	CITATIONS
37	Use of 3D Printing for the Development of Biodegradable Antiplatelet Materials for Cardiovascular Applications. Pharmaceuticals, 2021, 14, 921.	1.7	25
38	3D-printed implantable devices with biodegradable rate-controlling membrane for sustained delivery of hydrophobic drugs. Drug Delivery, 2022, 29, 1038-1048.	2.5	25
39	TPU-based antiplatelet cardiovascular prostheses prepared using fused deposition modelling. Materials and Design, 2022, 220, 110837.	3.3	25
40	Development of high-performance binderless fiberboards from wheat straw residue. Construction and Building Materials, 2020, 232, 117247.	3.2	24
41	Poly(caprolactone)-based subcutaneous implant for sustained delivery of levothyroxine. International Journal of Pharmaceutics, 2021, 607, 121011.	2.6	24
42	Elucidating the Impact of Surfactants on the Performance of Dissolving Microneedle Array Patches. Molecular Pharmaceutics, 2022, 19, 1191-1208.	2.3	24
43	3D-printed reservoir-type implants containing poly(lactic acid)/poly(caprolactone) porous membranes for sustained drug delivery. , 2022, 139, 213024.		20
44	Industrial application of orange tree nanocellulose as papermaking reinforcement agent. Cellulose, 2020, 27, 10781-10797.	2.4	19
45	Recycled fibers for fluting production: The role of lignocellulosic micro/nanofibers of banana leaves. Journal of Cleaner Production, 2018, 172, 233-238.	4.6	17
46	Poly(methyl vinyl ether-co-maleic acid) Hydrogels Containing Cyclodextrins and Tween 85 for Potential Application as Hydrophobic Drug Delivery Systems. Macromolecular Research, 2019, 27, 396-403.	1.0	14
47	Potential of Polymeric Films Loaded with Gold Nanorods for Local Hyperthermia Applications. Nanomaterials, 2020, 10, 582.	1.9	13
48	Design and Development of Levodopa Loaded Polymeric Nanoparticles for Intranasal Delivery. Pharmaceuticals, 2022, 15, 370.	1.7	13
49	Coagulation–Flocculation as an Alternative Way to Reduce the Toxicity of the Black Liquor from the Paper Industry: Thermal Valorization of the Solid Biomass Recovered. Waste and Biomass Valorization, 2020, 11, 4731-4742.	1.8	12
50	Plasmonic photothermal microneedle arrays and single needles for minimally-invasive deep in-skin hyperthermia. Journal of Materials Chemistry B, 2020, 8, 5425-5433.	2.9	12
51	HPLC method for levothyroxine quantification in long-acting drug delivery systems. Validation and evaluation of bovine serum albumin as levothyroxine stabilizer. Journal of Pharmaceutical and Biomedical Analysis, 2021, 203, 114182.	1.4	11
52	Inclusion Complexes of Rifampicin with Native and Derivatized Cyclodextrins: In Silico Modeling, Formulation, and Characterization. Pharmaceuticals, 2022, 15, 20.	1.7	10
53	A New and Sensitive HPLC-UV Method for Rapid and Simultaneous Quantification of Curcumin and D-Panthenol: Application to In Vitro Release Studies of Wound Dressings. Molecules, 2022, 27, 1759.	1.7	9
54	Development and validation of a high-performance liquid chromatography method for levothyroxine sodium quantification in plasma for pre-clinical evaluation of long-acting drug delivery systems. Analytical Methods, 2021, 13, 5204-5210.	1.3	6

55Classification, material types, and design approaches of long-acting and implantable drug delivery systems., 2022, , 17-59.356EVALUATION OF THE POTENTIAL OF ALTERNATIVE VEGETABLE MATERIALS FOR PRODUCTION OF PAPER THROUGH KRAFT PROCESSES. Cellulose Chemistry and Technology, 2020, 54, 73-81.0.52	#	Article	IF	CITATIONS
	55			3
	56		0.5	2
57Fabrication of lignin-based hydrogels and their applications. , 2021, , 371-394.1	57	Fabrication of lignin-based hydrogels and their applications. , 2021, , 371-394.		1