
Hitoshi Nakamoto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6536888/publications.pdf Version: 2024-02-01

ΗΙΤΟSΗΙ ΝΑΚΑΜΟΤΟ

#	Article	IF	CITATIONS
1	The Therapeutic Target Hsp90 and Cancer Hallmarks. Current Pharmaceutical Design, 2013, 19, 347-365.	0.9	278
2	Light-driven Hydrogen Production by a Hybrid Complex of a [NiFe]-Hydrogenase and the Cyanobacterial Photosystem I. Photochemistry and Photobiology, 2006, 82, 676.	1.3	176
3	Photosynthetic Characteristics of C3-C4 Intermediate Flaveria Species. Plant Physiology, 1983, 71, 944-948.	2.3	143
4	Heat shock response in photosynthetic organisms: Membrane and lipid connections. Progress in Lipid Research, 2012, 51, 208-220.	5.3	134
5	Regulation of Expression of Carbon-Assimilating Enzymes by Nitrogen in Maize Leaf. Plant Physiology, 1990, 92, 963-969.	2.3	120
6	Constitutive expression of a small heat-shock protein confers cellular thermotolerance and thermal protection to the photosynthetic apparatus in cyanobacteria. FEBS Letters, 2000, 483, 169-174.	1.3	95
7	HtpG is essential for the thermal stress management in cyanobacteria. FEBS Letters, 1999, 458, 117-123.	1.3	85
8	Membrane Regulation of the Stress Response from Prokaryotic Models to Mammalian Cells. Annals of the New York Academy of Sciences, 2007, 1113, 40-51.	1.8	76
9	Intact Carboxysomes in a Cyanobacterial Cell Visualized by Hilbert Differential Contrast Transmission Electron Microscopy. Journal of Bacteriology, 2006, 188, 805-808.	1.0	74
10	HtpG, the prokaryotic homologue of Hsp90, stabilizes a phycobilisome protein in the cyanobacterium Synechococcus elongatus PCC 7942. Molecular Microbiology, 2010, 76, 576-589.	1.2	70
11	Role for the Cyanobacterial HtpG in Protection from Oxidative Stress. Current Microbiology, 2003, 46, 70-76.	1.0	68
12	Physical Interaction between Bacterial Heat Shock Protein (Hsp) 90 and Hsp70 Chaperones Mediates Their Cooperative Action to Refold Denatured Proteins. Journal of Biological Chemistry, 2014, 289, 6110-6119.	1.6	68
13	Photoinduced Hydrogen Production by Direct Electron Transfer from Photosystem I Cross-Linked with Cytochrome c ₃ to [NiFe]-Hydrogenase. Photochemistry and Photobiology, 2006, 82, 1677-1685.	1.3	61
14	Influence of Leaf Age on Photosynthesis, Enzyme Activity, and Metabolite Levels in Wheat. Plant Physiology, 1987, 84, 1244-1248.	2.3	59
15	Targeted inactivation of thehrcArepressor gene in cyanobacteria. FEBS Letters, 2003, 549, 57-62.	1.3	58
16	HtpG Plays a Role in Cold Acclimation in Cyanobacteria. Current Microbiology, 2002, 44, 291-296.	1.0	53
17	Pyruvate, Pi Dikinase in Bundle Sheath Strands as Well as in Mesophyll Cells in Maize Leaves. Plant Physiology, 1985, 78, 661-664.	2.3	52
18	Purification and characterization of the 16-kDa heat-shock-responsive protein from the thermophilic cyanobacterium Synechococcus vulcanus, which is an alpha-crystallin-related, small heat shock protein. FEBS Journal, 1999, 262, 406-416.	0.2	50

#	Article	IF	CITATIONS
19	Influence of Oxygen and Temperature on the Dark Inactivation of Pyruvate, Orthophosphate Dikinase and NADP-Malate Dehydrogenase in Maize. Plant Physiology, 1983, 71, 568-573.	2.3	44
20	A small heat-shock protein confers stress tolerance and stabilizes thylakoid membrane proteins in cyanobacteria under oxidative stress. Archives of Microbiology, 2009, 191, 319-328.	1.0	42
21	Resilience and self-regulation processes of microalgae under UV radiation stress. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2020, 43, 100322.	5.6	40
22	Purification and Characterization of NAD Malic Enzyme from Leaves of <i>Eleusine coracana</i> and <i>Panicum dichotomiflorum</i> . Plant Physiology, 1989, 89, 316-324.	2.3	38
23	Cloning, characterization and functional analysis of groESL operon from thermophilic cyanobacterium Synechococcus vulcanus. BBA - Proteins and Proteomics, 1997, 1343, 335-348.	2.1	37
24	Studies on the role of HtpG in the tetrapyrrole biosynthesis pathway of the cyanobacterium Synechococcus elongatus PCC 7942. Biochemical and Biophysical Research Communications, 2007, 352, 36-41.	1.0	35
25	Ultrastructural stability under high temperature or intensive light stress conferred by a small heat shock protein in cyanobacteria. FEBS Letters, 2005, 579, 1235-1242.	1.3	34
26	Light plays a key role in the modulation of heat shock response in the cyanobacterium Synechocystis sp. PCC 6803. Biochemical and Biophysical Research Communications, 2003, 306, 872-879.	1.0	33
27	Roles of the cyanobacterial isiABC operon in protection from oxidative and heat stresses. Physiologia Plantarum, 2006, 128, 507-519.	2.6	32
28	Cloning, characterization and functional analysis of groEL-like gene from thermophilic cyanobacterium Synechococcus vulcanus, which does not form an operon with groES. BBA - Proteins and Proteomics, 1996, 1294, 106-110.	2.1	31
29	Partial Characterization of the in Vitro Activation of Inactive Pyruvate, Pi Dikinase from Darkened Maize Leaves. Plant Physiology, 1982, 69, 749-753.	2.3	30
30	Comparative analysis of the hspA mutant and wild-type Synechocystis sp. strain PCC 6803 under salt stress: evaluation of the role of hspA in salt-stress management. Archives of Microbiology, 2004, 182, 487-497.	1.0	30
31	Expression and function of a <i>groEL</i> paralog in the thermophilic cyanobacterium <i>Thermosynechococcuselongatus</i> under heat and cold stress. FEBS Letters, 2008, 582, 3389-3395.	1.3	30
32	A novel light- and heat-responsive regulation of thegroEtranscription in the absence of HrcA or CIRCE in cyanobacteria. FEBS Letters, 2007, 581, 1871-1880.	1.3	28
33	Far-red stimulated long-lived luminescence from barley protoplasts. Plant Science, 1988, 55, 1-7.	1.7	27
34	Interaction of a small heat shock protein with light-harvesting cyanobacterial phycocyanins under stress conditions. FEBS Letters, 2006, 580, 3029-3034.	1.3	26
35	Cloning, Characterization, and Transcriptional Analysis of a Gene Encoding an α-Crystallin-Related, Small Heat Shock Protein from the Thermophilic Cyanobacterium Synechococcus vulcanus. Journal of Bacteriology, 1998, 180, 3997-4001.	1.0	24
36	Light Activation of Pyruvate,Pi Dikinase and NADP-Malate Dehydrogenase in Mesophyll Protoplasts of Maize. Plant Physiology, 1986, 82, 312-315.	2.3	23

#	Article	IF	CITATIONS
37	Cyclic lipopeptide antibiotics bind to the N-terminal domain of the prokaryotic Hsp90 to inhibit the chaperone activity. Biochemical Journal, 2011, 435, 237-246.	1.7	23
38	Specific binding of a protein to a novel DNA element in the cyanobacterial small heat-shock protein gene. Biochemical and Biophysical Research Communications, 2002, 297, 616-624.	1.0	21
39	Interaction of the Molecular Chaperone HtpG with Uroporphyrinogen Decarboxylase in the Cyanobacterium <i>Synechococcus elongatus</i> PCC 7942. Bioscience, Biotechnology and Biochemistry, 2008, 72, 1394-1397.	0.6	21
40	Conserved temperature-dependent expression of RNA-binding proteins in cyanobacteria with different temperature optima. FEMS Microbiology Letters, 2003, 225, 137-142.	0.7	18
41	Comparative Biochemical Characterization of Two GroEL Homologs from the Cyanobacterium <i>Synechococcus elongatus</i> PCC 7942. Bioscience, Biotechnology and Biochemistry, 2010, 74, 2273-2280.	0.6	17
42	Nonâ€housekeeping, nonâ€essential <scp>GroEL</scp> (chaperonin) has acquired novel structure and function beneficial under stress in cyanobacteria. Physiologia Plantarum, 2017, 161, 296-310.	2.6	13
43	A Novel Heat Shock Protein Plays an Important Role in Thermal Stress Management in Cyanobacteria. Journal of Biological Chemistry, 2001, 276, 25088-25095.	1.6	12
44	Sudden changes in the rate of photosynthetic oxygen evolution and chlorophyll fluorescence in intact isolated chloroplasts: the role of orthophosphate. Photosynthesis Research, 1987, 11, 119-130.	1.6	11
45	Post-transcriptional control of the cyanobacterial hspA heat-shock induction. Biochemical and Biophysical Research Communications, 2005, 331, 583-588.	1.0	11
46	Inhibition of C4 photosynthesis by (benzamidooxy)acetic acid. Photosynthesis Research, 1982, 3, 293-305.	1.6	10
47	The NADPH thioredoxin reductase C functions as an electron donor to 2-Cys peroxiredoxin in a thermophilic cyanobacterium Thermosynechococcus elongatus BP-1. Biochemical and Biophysical Research Communications, 2009, 380, 520-524.	1.0	10
48	Goniothalamin enhances the ATPase activity of the molecular chaperone Hsp90 but inhibits its chaperone activity. Journal of Biochemistry, 2015, 157, 161-168.	0.9	10
49	A cyclic lipopeptide surfactin is a species-selective Hsp90 inhibitor that suppresses cyanobacterial growth. Journal of Biochemistry, 2021, 170, 255-264.	0.9	8
50	Stimulation of the ATPase activity of Hsp90 by zerumbone modification of its cysteine residues destabilizes its clients and causes cytotoxicity. Biochemical Journal, 2018, 475, 2559-2576.	1.7	6
51	Dark Activation of NADP-Malate Dehydrogenase in Maize Leaf Discs. Zeitschrift Für Pflanzenphysiologie, 1984, 114, 315-320.	1.4	4
52	APPLICATIONS OF CAPILLARY ELECTROPHORESIS TO REDOX PROTEINS AND NUCLEOTIDES IN PHOTOSYNTHETIC SYSTEM. Analytical Sciences, 1991, 7, 1545-1548.	0.8	4
53	Editorial: [Hot Topic: Molecular Chaperones as Drug Targets]. Current Pharmaceutical Design, 2013, 19, 307-308.	0.9	3
54	Constitutive Expression of Small Heat Shock Protein in an htpG Disruptant of the Cyanobacterium Synechococcus sp. PCC 7942. Current Microbiology, 2005, 50, 272-276.	1.0	2

#	Article	IF	CITATIONS
55	pH-mediated control of anti-aggregation activities of cyanobacterial and E. coli chaperonin GroELs. Journal of Biochemistry, 2021, 169, 351-361.	0.9	2
56	Regulation of the <i>groESL1</i> transcription by the HrcA repressor and a novel transcription factor Orf7.5 in the cyanobacterium <i>Synechococcus elongatus</i> PCC7942. Journal of General and Applied Microbiology, 2020, 66, 85-92.	0.4	2
57	Nucleotide sequence of the psaD gene from the thermophilic cyanobacterium Synechococcus vulcanus. Photosynthesis Research, 1995, 46, 265-268.	1.6	1
58	pH-regulated chaperone function of cyanobacterial Hsp90 and Hsp70: implications for light/dark regulation. Journal of Biochemistry, 2021, 170, 463-471.	0.9	1
59	Cloning, characterization and transcriptional studies of ferredoxin genes from the mesophilic cyanobacterium Synechocystis sp. PCC 6803 and the thermophilic cyanobacterium Synechococcus vulcanus. Physiologia Plantarum, 1997, 101, 199-205.	2.6	0
60	2P331 Involvement of the molecular chaperone HtpG (Hsp90) in assembly and degradation of the supramolecular complex phycobilisome(Photobiology-photosynthesis, and vision and) Tj ETQq0 0 0 rgBT /Overlo	ock a.0 Tf 5	0 5087 Td (ph
61	3P-272 Interaction of HtpG (Hsp90) with the DnaK (Hsp70) chaperone system in the cyanobacterium Synechococcus sp. PCC 7942(The 46th Annual Meeting of the Biophysical Society of Japan). Seibutsu Butsuri, 2008, 48, S169.	0.0	0
62	1TP3-03 Cyanobacterial DnaK/DnaJ/GrpE system and the modulation of its refolding activity by HtpG(The) Tj ETQ	9000 rgt	3T /Overlock I
	Cloning, characterization and transcriptional studies of ferredoxin genes from the mesophilic		

63	Cloning, characterization and transcriptional studies of ferredoxin genes from the mesophilic cyanobacterium Synechocystis sp. PCC 6803 and the thermophilic cyanobacterium Synechococcus vulcanus. Physiologia Plantarum, 1997, 101, 199-205.	2.6	0
64	Regulation of Metabolism and Structural Polymorphism of Amyloid Fibrils. Seibutsu Butsuri, 2020, 60, 236-240.	0.0	0