Alexei Sorokine

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6536784/publications.pdf

Version: 2024-02-01

147566 143772 11,058 61 31 57 citations h-index g-index papers 61 61 61 8941 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	The complete genome sequence of the Gram-positive bacterium Bacillus subtilis. Nature, 1997, 390, 249-256.	13.7	3,519
2	Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin. Microbiology (United Kingdom), 2005, 151, 2551-2561.	0.7	1,396
3	The Complete Genome Sequence of the Lactic Acid Bacterium Lactococcus lactis ssp. lactis IL1403. Genome Research, 2001, 11, 731-753.	2.4	904
4	Genome sequence of Bacillus cereus and comparative analysis with Bacillus anthracis. Nature, 2003, 423, 87-91.	13.7	740
5	The Complete Genome Sequence of the Lactic Acid Bacterium <i>Lactococcus lactis</i> ssp. <i>lactis</i> IL1403. Genome Research, 2001, 11, 731-753.	2.4	582
6	Complete sequence and comparative genome analysis of the dairy bacterium Streptococcus thermophilus. Nature Biotechnology, 2004, 22, 1554-1558.	9.4	485
7	Ecological diversification in the <i>Bacillus cereus</i> Group. Environmental Microbiology, 2008, 10, 851-865.	1.8	413
8	Complete genome sequence of the industrial bacterium Bacillus licheniformis and comparisons with closely related Bacillus species. Genome Biology, 2004, 5, r77.	13.9	319
9	Bacillus cytotoxicus sp. nov. is a novel thermotolerant species of the Bacillus cereus Group occasionally associated with food poisoning. International Journal of Systematic and Evolutionary Microbiology, 2013, 63, 31-40.	0.8	303
10	Regulators of aerobic and anaerobic respiration in Bacillus subtilis. Journal of Bacteriology, 1996, 178, 1374-1385.	1.0	169
11	Analysis of six prophages in Lactococcus lactis IL1403: different genetic structure of temperate and virulent phage populations. Nucleic Acids Research, 2001, 29, 644-651.	6.5	162
12	Low-redundancy sequencing of the entire Lactococcus lactis IL1403 genome. Antonie Van Leeuwenhoek, 1999, 76, 27-76.	0.7	153
13	Expression of a stress- and starvation-induced dps/pexB-homologous gene is controlled by the alternative sigma factor sigmaB in Bacillus subtilis. Journal of Bacteriology, 1997, 179, 7251-7256.	1.0	142
14	Extending the Bacillus cereus group genomics to putative food-borne pathogens of different toxicity. Chemico-Biological Interactions, 2008, 171, 236-249.	1.7	140
15	SecDF of Bacillus subtilis, a Molecular Siamese Twin Required for the Efficient Secretion of Proteins. Journal of Biological Chemistry, 1998, 273, 21217-21224.	1.6	123
16	Multiple-Locus Sequence Typing Analysis of Bacillus cereus and Bacillus thuringiensis Reveals Separate Clustering and a Distinct Population Structure of Psychrotrophic Strains. Applied and Environmental Microbiology, 2006, 72, 1569-1578.	1.4	122
17	The Bacillus subtilis sigma(X) protein is an extracytoplasmic function sigma factor contributing to survival at high temperature. Journal of Bacteriology, 1997, 179, 2915-2921.	1.0	87
18	The organization of the <i>Bacillus subtilis</i> 168 chromosome region between the <i>spoVA</i> and <i>serA</i> genetic loci, based on sequence data. Molecular Microbiology, 1993, 10, 385-395.	1.2	84

#	Article	IF	CITATIONS
19	Adaptation of Bacillus cereus, an ubiquitous worldwide-distributed foodborne pathogen, to a changing environment. Food Research International, 2010, 43, 1885-1894.	2.9	76
20	Discovering lactic acid bacteria by genomics. , 2002, 82, 29-58.		74
21	Comparative genome analysis ofBacillus cereusgroup genomes withBacillus subtilis. FEMS Microbiology Letters, 2005, 250, 175-184.	0.7	73
22	Bacillus subtilis can modulate its capacity and specificity for protein secretion through temporally controlled expression of the sipS gene for signal peptidase I. Molecular Microbiology, 1996, 22, 605-618.	1.2	59
23	Genetic Recombination in <i>Bacillus subtilis</i> 168: Effects of <i>recU</i> and <i>recS</i> Mutations on DNA Repair and Homologous Recombination. Journal of Bacteriology, 1998, 180, 3405-3409.	1.0	58
24	Cloning and characterization of the Bacillus subtilis birA gene encoding a repressor of the biotin operon. Journal of Bacteriology, 1995, 177, 2572-2575.	1.0	56
25	The Bacillus subtilis chromosome region encoding homologues of the Escherichia coli mssA and rpsA gene products. Microbiology (United Kingdom), 1995, 141, 311-319.	0.7	46
26	Sequencing and functional annotation of the Bacillus subtilis genes in the 200 kb rrnB-dnaB region. Microbiology (United Kingdom), 1997, 143, 3431-3441.	0.7	45
27	The Genetically Remote Pathogenic Strain NVH391-98 of the <i>Bacillus cereus</i> Group Is Representative of a Cluster of Thermophilic Strains. Applied and Environmental Microbiology, 2008, 74, 1276-1280.	1.4	41
28	Characterization of the Bacillus subtilis YxdJ response regulator as the inducer of expression for the cognate ABC transporter YxdLM. Microbiology (United Kingdom), 2004, 150, 2609-2617.	0.7	36
29	Nucleotide sequence of the Bacillus subtilis dnaD gene. Microbiology (United Kingdom), 1995, 141, 321-322.	0.7	35
30	Genome Sequence of " <i>Candidatus</i> Arthromitus―sp. Strain SFB-Mouse-NL, a Commensal Bacterium with a Key Role in Postnatal Maturation of Gut Immune Functions. Genome Announcements, 2014, 2, .	0.8	35
31	Nucleotide sequence analysis of the cloned salmon preproinsulin cDNA. Gene, 1982, 20, 367-376.	1.0	34
32	A new approach using multiplex long accurate PCR and yeast artificial chromosomes for bacterial chromosome mapping and sequencing Genome Research, 1996, 6, 448-453.	2.4	34
33	Two distinct types of rRNA operons in the Bacillus cereus group. Microbiology (United Kingdom), 2004, 150, 601-611.	0.7	33
34	Role of plasmid plasticity and mobile genetic elements in the entomopathogen Bacillus thuringiensis serovar israelensis. FEMS Microbiology Reviews, 2018, 42, 829-856.	3.9	33
35	The transcriptional organization of the <i>Bacillus subtilis</i> 168 chromosome region between the <i>spoVAF and serA</i> genetic loci. Molecular Microbiology, 1993, 10, 397-405.	1.2	32
36	Sequence analysis of the Bacillus subtilis chromosome region between the serA and kdg loci cloned in a yeast artificial chromosome. Microbiology (United Kingdom), 1996, 142, 2005-2016.	0.7	32

#	Article	IF	CITATIONS
37	The kdgRKAT operon of Bacillus subtilis:detection of the transcript and regulation by the kdgR and ccpA genes. Microbiology (United Kingdom), 1998, 144, 3111-3118.	0.7	32
38	Temperature-inducible gene expression in Bacillus subtilis mediated by the c1857-encoded repressor of bacteriophage lambda. Gene, 1990, 93, 35-40.	1.0	31
39	Recent Genetic Transfer between Lactococcus lactis and Enterobacteria. Journal of Bacteriology, 2004, 186, 6671-6677.	1.0	28
40	Comparative genomics of extrachromosomal elements in Bacillus thuringiensis subsp. israelensis. Research in Microbiology, 2017, 168, 331-344.	1.0	28
41	Complete Genome Sequence of Lactococcus lactis subsp. cremoris A76. Journal of Bacteriology, 2012, 194, 1241-1242.	1.0	26
42	GenoFrag: software to design primers optimized for whole genome scanning by long-range PCR amplification. Nucleic Acids Research, 2004, 32, 17-24.	6.5	24
43	Co-linear scaffold of theBacillus licheniformisandBacillus subtilisgenomes and its use to compare their competence genes. FEMS Microbiology Letters, 2002, 209, 23-30.	0.7	23
44	Sequence of the Bacillus subtilis genome region in the vicinity of the lev operon reveals two new extracytoplasmic function RNA polymerase sigma factors SigV and SigZ. Microbiology (United) Tj ETQqO 0 0 rgBT	/ О <i>т</i> erlock	120 Tf 50 45
45	Genome Sequence of the Atypical Symbiotic <i>Frankia</i> R43 Strain, a Nitrogen-Fixing and Hydrogen-Producing Actinobacterium. Genome Announcements, 2015, 3, .	0.8	21
46	Detection of the cryptic prophage-like molecule pBtic235 in Bacillus thuringiensis subsp. israelensis. Research in Microbiology, 2017, 168, 319-330.	1.0	19
47	A 23 911 bp region of the Bacillus subtilis genome comprising genes located upstream and downstream of the lev operon. Microbiology (United Kingdom), 1997, 143, 1321-1326.	0.7	18
48	Sequence Analysis of Inducible Prophage phIS3501 Integrated into the Haemolysin II Gene of Bacillus thuringiensis var israelensis ATCC35646. Genetics Research International, 2012, 2012, 1-9.	2.0	17
49	Molecular Mechanisms That Contribute to Horizontal Transfer of Plasmids by the Bacteriophage SPP1. Frontiers in Microbiology, 2017, 8, 1816.	1.5	17
50	Organization of the Bacillus subtilis 168 chromosome between kdg and the attachment site of the SPÂ prophage: use of Long Accurate PCR and yeast artificial chromosomes for sequencing. Microbiology (United Kingdom), 1996, 142, 3005-3015.	0.7	15
51	Orientation specificity of theLactococcus lactisChi site. Genes To Cells, 2000, 5, 453-461.	0.5	11
52	Functional and Morphological Adaptation to Peptidoglycan Precursor Alteration in Lactococcus lactis. Journal of Biological Chemistry, 2010, 285, 24003-24013.	1.6	11
53	Studies of genomes of dairy bacteria <i>Lactococcus lactis</i> . Sciences Des Aliments, 2002, 22, 45-53.	0.2	9
54	Mapping of the 150 kb spollIC-pheA region of the Bacillus subtilis chromosome using Long Accurate PCR and three yeast artificial chromosomes. Microbiology (United Kingdom), 1996, 142, 3017-3020.	0.7	8

ALEXEI SOROKINE

#	Article	IF	Citations
55	Low-redundancy sequencing of the entire Lactococcus lactis IL1403 genome. , 1999, , 27-76.		6
56	Complete Genome Sequence of the Highly Hemolytic Strain Bacillus cereus F837/76. Journal of Bacteriology, 2012, 194, 1630-1630.	1.0	5
57	The Bacillus cereus Group. , 2015, , 1041-1078.		5
58	Genomic Sequence of the Prophage-Free Lactococcus lactis Strain IL6288. Microbiology Resource Announcements, 2019, 8, .	0.3	3
59	ORFograph: search for novel insecticidal protein genes in genomic and metagenomic assembly graphs. Microbiome, 2021, 9, 149.	4.9	3
60	Bacillus thuringiensis Genetics and Phages—From Transduction and Sequencing to Recombineering. , 2012, , 131-157.		1
61	Long inverted repeats around the chromosome replication terminus in the model strain Bacillus thuringiensis serovar israelensis BGSC 4Q7. Microbial Genomics, 2020, 6, .	1.0	1