Frank von der Kammer

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/6536639/frank-von-der-kammer-publications-by-year.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

116
papers7,647
citations47
h-index86
g-index119
ext. papers8,348
ext. citations7
avg, IF5.94
L-index

#	Paper	IF	Citations
116	Refinement of the selection of physicochemical properties for grouping and read-across of nanoforms <i>NanoImpact</i> , 2022 , 25, 100375	5.6	2
115	Rapid analysis of gunshot residues with single-particle inductively coupled plasma time-of-flight mass spectrometry <i>Forensic Science International</i> , 2022 , 332, 111202	2.6	2
114	Towards Standardization for Determining Dissolution Kinetics of Nanomaterials in Natural Aquatic Environments: Continuous Flow Dissolution of Ag Nanoparticles <i>Nanomaterials</i> , 2022 , 12,	5.4	2
113	Exploring Nanogeochemical Environments: New Insights from Single Particle ICP-TOFMS and AF4-ICPMS ACS Earth and Space Chemistry, 2022 , 6, 943-952	3.2	1
112	Freshwater suspended particulate matter R ey components and processes in floc formation and dynamics. <i>Water Research</i> , 2022 , 220, 118655	12.5	Ο
111	New guidance brings clarity to environmental hazard and behaviour testing of nanomaterials. <i>Nature Nanotechnology</i> , 2021 , 16, 482-483	28.7	5
110	Methanol-based extraction protocol for insoluble and moderately water-soluble nanoparticles in plants to enable characterization by single particle ICP-MS. <i>Analytical and Bioanalytical Chemistry</i> , 2021 , 413, 299-314	4.4	5
109	Novel multimethod approach for the determination of the colloidal stability of nanomaterials in complex environmental mixtures using a global stability index: TiO as case study. <i>Science of the Total Environment</i> , 2021 , 801, 149607	10.2	2
108	A critical evaluation of short columns for estimating the attachment efficiency of engineered nanomaterials in natural soils. <i>Environmental Science: Nano</i> , 2021 , 8, 1801-1814	7.1	0
107	A Large-Scale 3D Study on Transport of Humic Acid-Coated Goethite Nanoparticles for Aquifer Remediation. <i>Water (Switzerland)</i> , 2020 , 12, 1207	3	14
106	Quantification and Characterization of Nanoparticulate Zinc in an Urban Watershed. <i>Frontiers in Environmental Science</i> , 2020 , 8,	4.8	11
105	Intra-laboratory assessment of a method for the detection of TiO2 nanoparticles present in sunscreens based on multi-detector asymmetrical flow field-flow fractionation. <i>NanoImpact</i> , 2020 , 19, 100233	5.6	4
104	Strategies for determining heteroaggregation attachment efficiencies of engineered nanoparticles in aquatic environments. <i>Environmental Science: Nano</i> , 2020 , 7, 351-367	7.1	35
103	Harmonizing across environmental nanomaterial testing media for increased comparability of nanomaterial datasets. <i>Environmental Science: Nano</i> , 2020 , 7, 13-36	7.1	23
102	Quantification of anthropogenic and geogenic Ce in sewage sludge based on Ce oxidation state and rare earth element patterns. <i>Water Research X</i> , 2020 , 9, 100059	8.1	5
101	The importance of aromaticity to describe the interactions of organic matter with carbonaceous materials depends on molecular weight and sorbent geometry. <i>Environmental Sciences: Processes and Impacts</i> , 2020 , 22, 1888-1897	4.3	6
100	Key principles and operational practices for improved nanotechnology environmental exposure assessment. <i>Nature Nanotechnology</i> , 2020 , 15, 731-742	28.7	34

(2016-2020)

99	Accurate quantification of TiO nanoparticles in commercial sunscreens using standard materials and orthogonal particle sizing methods for verification. <i>Talanta</i> , 2020 , 215, 120921	6.2	15
98	Legal and practical challenges in classifying nanomaterials according to regulatory definitions. Nature Nanotechnology, 2019 , 14, 208-216	28.7	72
97	Opportunities for examining the natural nanogeochemical environment using recent advances in nanoparticle analysis. <i>Journal of Analytical Atomic Spectrometry</i> , 2019 , 34, 1768-1772	3.7	12
96	Persistence of copper-based nanoparticle-containing foliar sprays in Lactuca sativa (lettuce) characterized by spICP-MS. <i>Journal of Nanoparticle Research</i> , 2019 , 21, 1	2.3	13
95	Scientific rationale for the development of an OECD test guideline on engineered nanomaterial stability. <i>NanoImpact</i> , 2018 , 11, 42-50	5.6	22
94	Environmental Impacts by Fragments Released from Nanoenabled Products: A Multiassay, Multimaterial Exploration by the SUN Approach. <i>Environmental Science & Environmental Environ</i>	4-9:324	1 ³⁰
93	Transformations of Nanoenabled Copper Formulations Govern Release, Antifungal Effectiveness, and Sustainability throughout the Wood Protection Lifecycle. <i>Environmental Science & Environmental Science & Technology</i> , 2018 , 52, 1128-1138	10.3	22
92	Proposal for a tiered dietary bioaccumulation testing strategy for engineered nanomaterials using fish. <i>Environmental Science: Nano</i> , 2018 , 5, 2030-2046	7.1	17
91	Where is the nano? Analytical approaches for the detection and quantification of TiO2 engineered nanoparticles in surface waters. <i>Environmental Science: Nano</i> , 2018 , 5, 313-326	7.1	77
90	Effect of field site hydrogeochemical conditions on the corrosion of milled zerovalent iron particles and their dechlorination efficiency. <i>Science of the Total Environment</i> , 2018 , 618, 1619-1627	10.2	13
89	Mechanisms of (photo)toxicity of TiO nanomaterials (NM103, NM104, NM105): using high-throughput gene expression in Enchytraeus crypticus. <i>Nanoscale</i> , 2018 , 10, 21960-21970	7.7	12
88	Single-particle multi-element fingerprinting (spMEF) using inductively-coupled plasma time-of-flight mass spectrometry (ICP-TOFMS) to identify engineered nanoparticles against the elevated natural background in soils. <i>Environmental Science: Nano</i> , 2017 , 4, 307-314	7.1	96
87	Microplastic Exposure Assessment in Aquatic Environments: Learning from Similarities and Differences to Engineered Nanoparticles. <i>Environmental Science & Engineered Research (Nanoparticles)</i> 2499-2507	,10.3	103
86	TiO2 nanomaterial detection in calcium rich matrices by spICPMS. A matter of resolution and treatment. <i>Journal of Analytical Atomic Spectrometry</i> , 2017 , 32, 1400-1411	3.7	27
85	Nanoscale Coloristic Pigments: Upper Limits on Releases from Pigmented Plastic during Environmental Aging, In Food Contact, and by Leaching. <i>Environmental Science & Environmental Science & Environm</i>	10.3	25
84	Release of TiO 2 [Nano) particles from construction and demolition landfills. <i>NanoImpact</i> , 2017 , 8, 73-79	95.6	30
83	Impact of Sodium Humate Coating on Collector Surfaces on Deposition of Polymer-Coated Nanoiron Particles. <i>Environmental Science & Environmental Scien</i>	10.3	13
82	Physicochemical characterization of titanium dioxide pigments using various techniques for size determination and asymmetric flow field flow fractionation hyphenated with inductively coupled plasma mass spectrometry. <i>Analytical and Bioanalytical Chemistry</i> , 2016 , 408, 6679-91	4.4	26

81	Silver and gold nanoparticle separation using asymmetrical flow-field flow fractionation: Influence of run conditions and of particle and membrane charges. <i>Journal of Chromatography A</i> , 2016 , 1440, 150	- 11 559	36
80	Meeting the Needs for Released Nanomaterials Required for Further Testing-The SUN Approach. <i>Environmental Science & Environmental Science & Environme</i>	10.3	49
79	Agar agar-stabilized milled zerovalent iron particles for in situ groundwater remediation. <i>Science of the Total Environment</i> , 2016 , 563-564, 713-23	10.2	24
78	Combining gas-phase electrophoretic mobility molecular analysis (GEMMA), light scattering, field flow fractionation and cryo electron microscopy in a multidimensional approach to characterize liposomal carrier vesicles. <i>International Journal of Pharmaceutics</i> , 2016 , 513, 309-318	6.5	16
77	Nano electrospray gas-phase electrophoretic mobility molecular analysis (nES GEMMA) of liposomes: applicability of the technique for nano vesicle batch control. <i>Analyst, The</i> , 2016 , 141, 6042-6	050	12
76	Feasibility of the development of reference materials for the detection of Ag nanoparticles in food: neat dispersions and spiked chicken meat. <i>Accreditation and Quality Assurance</i> , 2015 , 20, 3-16	0.7	29
75	A uniform measurement expression for cross method comparison of nanoparticle aggregate size distributions. <i>Analyst, The</i> , 2015 , 140, 5257-67	5	13
74	Nanomaterial environmental risk assessment. <i>Integrated Environmental Assessment and Management</i> , 2015 , 11, 333-5	2.5	6
73	Progress towards the validation of modeled environmental concentrations of engineered nanomaterials by analytical measurements. <i>Environmental Science: Nano</i> , 2015 , 2, 421-428	7.1	94
72	River-derived humic substances as iron chelators in seawater. <i>Marine Chemistry</i> , 2015 , 174, 85-93	3.7	55
71	Concentrations and Distributions of Metals Associated with Dissolved Organic Matter from the Suwannee River (GA, USA). <i>Environmental Engineering Science</i> , 2015 , 32, 54-65	2	19
70	Detection of Engineered Copper Nanoparticles in Soil Using Single Particle ICP-MS. <i>International Journal of Environmental Research and Public Health</i> , 2015 , 12, 15756-68	4.6	73
69	First steps towards a generic sample preparation scheme for inorganic engineered nanoparticles in a complex matrix for detection, characterization, and quantification by asymmetric flow-field flow fractionation coupled to multi-angle light scattering and ICP-MS. <i>Journal of Analytical Atomic</i>	3.7	60
68	Spectrometry, 2015 , 30, 1286-1296 A Review of the Properties and Processes Determining the Fate of Engineered Nanomaterials in the Aquatic Environment. <i>Critical Reviews in Environmental Science and Technology</i> , 2015 , 45, 2084-2134	1 ^{11.1}	145
67	Dynamic light-scattering measurement comparability of nanomaterial suspensions. <i>Journal of Nanoparticle Research</i> , 2014 , 16, 1	2.3	33
66	Production of reference materials for the detection and size determination of silica nanoparticles in tomato soup. <i>Analytical and Bioanalytical Chemistry</i> , 2014 , 406, 3895-907	4.4	32
65	The road to nowhere: equilibrium partition coefficients for nanoparticles. <i>Environmental Science: Nano</i> , 2014 , 1, 317-323	7.1	116
64	Spot the difference: engineered and natural nanoparticles in the environmentrelease, behavior, and fate. <i>Angewandte Chemie - International Edition</i> , 2014 , 53, 12398-419	16.4	91

(2013-2014)

63	Accessibility of humic-associated Fe to a microbial siderophore: implications for bioavailability. <i>Environmental Science & Environmental Science & En</i>	10.3	19
62	Release of TiO2 nanoparticles from sunscreens into surface waters: a one-year survey at the old Danube recreational Lake. <i>Environmental Science & Environmental Science & Env</i>	10.3	283
61	Impact of particle size and light exposure on the effects of TiO2 nanoparticles on Caenorhabditis elegans. <i>Environmental Toxicology and Chemistry</i> , 2014 , 33, 2288-96	3.8	21
60	Concern-driven integrated approaches to nanomaterial testing and assessmentreport of the NanoSafety Cluster Working Group 10. <i>Nanotoxicology</i> , 2014 , 8, 334-48	5.3	111
59	Toward a comprehensive and realistic risk evaluation of engineered nanomaterials in the urban water system. <i>Frontiers in Chemistry</i> , 2014 , 2, 39	5	17
58	Current status and future direction for examining engineered nanoparticles in natural systems. <i>Environmental Chemistry</i> , 2014 , 11, 351	3.2	88
57	Asymmetrical Flow-Field-Flow Fractionation coupled with inductively coupled plasma mass spectrometry for the analysis of gold nanoparticles in the presence of natural nanoparticles. <i>Journal of Chromatography A</i> , 2014 , 1372C, 204-211	4.5	30
56	Detection and characterization of silver nanoparticles in chicken meat by asymmetric flow field flow fractionation with detection by conventional or single particle ICP-MS. <i>Analytical and Bioanalytical Chemistry</i> , 2013 , 405, 8185-95	4.4	158
55	Natural organic matter concentration and hydrochemistry influence aggregation kinetics of functionalized engineered nanoparticles. <i>Environmental Science & Environmental Scie</i>	10.3	76
54	Behavior of Ag nanoparticles in soil: effects of particle surface coating, aging and sewage sludge amendment. <i>Environmental Pollution</i> , 2013 , 182, 141-9	9.3	115
53	Validation of methods for the detection and quantification of engineered nanoparticles in food. <i>Food Chemistry</i> , 2013 , 138, 1959-66	8.5	79
52	Optimization and evaluation of asymmetric flow field-flow fractionation of silver nanoparticles. <i>Journal of Chromatography A</i> , 2013 , 1272, 116-25	4.5	78
51	The role of nanominerals and mineral nanoparticles in the transport of toxic trace metals: Field-flow fractionation and analytical TEM analyses after nanoparticle isolation and density separation. <i>Geochimica Et Cosmochimica Acta</i> , 2013 , 102, 213-225	5.5	73
50	Combining spatially resolved hydrochemical data with in-vitro nanoparticle stability testing: assessing environmental behavior of functionalized gold nanoparticles on a continental scale. <i>Environment International</i> , 2013 , 59, 53-62	12.9	14
49	Colloid-associated export of arsenic in stream water during stormflow events. <i>Chemical Geology</i> , 2013 , 352, 81-91	4.2	39
48	The influence of pH on iron speciation in podzol extracts: iron complexes with natural organic matter, and iron mineral nanoparticles. <i>Science of the Total Environment</i> , 2013 , 461-462, 108-16	10.2	46
47	Using FLOWFFF and HPSEC to determine trace metal-colloid associations in wetland runoff. <i>Water Research</i> , 2013 , 47, 2757-69	12.5	47
46	Effect of pH and stream order on iron and arsenic speciation in boreal catchments. <i>Environmental Science & Environmental Scie</i>	10.3	93

45	Natural organic matter and iron export from the Tanner Moor, Austria. <i>Limnologica</i> , 2013 , 43, 239-244	2	23
44	Analysis of engineered nanomaterials in complex matrices (environment and biota): general considerations and conceptual case studies. <i>Environmental Toxicology and Chemistry</i> , 2012 , 31, 32-49	3.8	355
43	Paradigms to assess the environmental impact of manufactured nanomaterials. <i>Environmental Toxicology and Chemistry</i> , 2012 , 31, 3-14	3.8	263
42	Bovine serum albumin adsorption to iron-oxide coated sands can change microsphere deposition mechanisms. <i>Environmental Science & Environmental Scienc</i>	10.3	22
41	The potential of TiO2 nanoparticles as carriers for cadmium uptake in Lumbriculus variegatus and Daphnia magna. <i>Aquatic Toxicology</i> , 2012 , 118-119, 1-8	5.1	66
40	Nanoscale lignin particles as sources of dissolved iron to the ocean. <i>Global Biogeochemical Cycles</i> , 2012 , 26,	5.9	46
39	Modeling colloid deposition on a protein layer adsorbed to iron-oxide-coated sand. <i>Journal of Contaminant Hydrology</i> , 2012 , 142-143, 50-62	3.9	7
38	Influence of surface functionalization and particle size on the aggregation kinetics of engineered nanoparticles. <i>Chemosphere</i> , 2012 , 87, 918-24	8.4	84
37	Comparing the Influence of Two Different Natural Organic Matter Types on Colloid Deposition in Saturated Porous Medium. <i>Advanced Materials Research</i> , 2012 , 455-456, 1324-1329	0.5	1
36	Influence of ionic strength and pH on the limitation of latex microsphere deposition sites on iron-oxide coated sand by humic acid. <i>Environmental Pollution</i> , 2011 , 159, 1896-904	9.3	26
35	Influence of carrier solution ionic strength and injected sample load on retention and recovery of natural nanoparticles using Flow Field-Flow Fractionation. <i>Journal of Chromatography A</i> , 2011 , 1218, 6763-73	4.5	40
34	Commercial titanium dioxide nanoparticles in both natural and synthetic water: comprehensive multidimensional testing and prediction of aggregation behavior. <i>Environmental Science & Environmental Science & Technology</i> , 2011 , 45, 10045-52	10.3	162
33	Identification and characterization of organic nanoparticles in food. <i>TrAC - Trends in Analytical Chemistry</i> , 2011 , 30, 100-112	14.6	72
32	Separation and characterization of nanoparticles in complex food and environmental samples by field-flow fractionation. <i>TrAC - Trends in Analytical Chemistry</i> , 2011 , 30, 425-436	14.6	221
31	Using FlFFF and aTEM to determine trace metaldanoparticle associations in riverbed sediment. <i>Environmental Chemistry</i> , 2010 , 7, 82	3.2	86
30	Field-flow fractionation and inductively coupled plasma mass spectrometer coupling: History, development and applications. <i>Journal of Analytical Atomic Spectrometry</i> , 2010 , 25, 613	3.7	109
29	Nanomaterials for environmental studies: classification, reference material issues, and strategies for physico-chemical characterisation. <i>Science of the Total Environment</i> , 2010 , 408, 1745-54	10.2	2 90
28	Relevance of peat-draining rivers for the riverine input of dissolved iron into the ocean. <i>Science of the Total Environment</i> , 2010 , 408, 2402-8	10.2	79

(2005-2010)

27	Quantifying the influence of humic acid adsorption on colloidal microsphere deposition onto iron-oxide-coated sand. <i>Environmental Pollution</i> , 2010 , 158, 3498-506	9.3	33
26	Assessment of the physico-chemical behavior of titanium dioxide nanoparticles in aquatic environments using multi-dimensional parameter testing. <i>Environmental Pollution</i> , 2010 , 158, 3472-81	9.3	84
25	Algal testing of titanium dioxide nanoparticlestesting considerations, inhibitory effects and modification of cadmium bioavailability. <i>Toxicology</i> , 2010 , 269, 190-7	4.4	247
24	Tetrachloroferrate containing ionic liquids: Magnetic- and aggregation behavior. <i>Inorganic Chemistry Communication</i> , 2010 , 13, 1485-1488	3.1	25
23	Nanostructured TiO2: transport behavior and effects on aquatic microbial communities under environmental conditions. <i>Environmental Science & Environmental Science & Environm</i>	10.3	198
22	Estimating the relevance of engineered carbonaceous nanoparticle facilitated transport of hydrophobic organic contaminants in porous media. <i>Environmental Pollution</i> , 2009 , 157, 1117-26	9.3	104
21	Humic acid adsorption and surface charge effects on schwertmannite and goethite in acid sulphate waters. <i>Water Research</i> , 2008 , 42, 2051-60	12.5	70
20	Ageing of synthetic and natural schwertmannites at pH 2B. Clay Minerals, 2008, 43, 437-448	1.3	37
19	The ecotoxicology and chemistry of manufactured nanoparticles. <i>Ecotoxicology</i> , 2008 , 17, 287-314	2.9	674
18	Nanoparticles: structure, properties, preparation and behaviour in environmental media. <i>Ecotoxicology</i> , 2008 , 17, 326-43	2.9	433
17	Optimisation of asymmetrical flow field flow fractionation for environmental nanoparticles separation. <i>Journal of Chromatography A</i> , 2008 , 1206, 160-5	4.5	83
16	Iron Oxides as Geochemical Nanovectors for Metal Transport in Soil-River Systems. <i>Elements</i> , 2008 , 4, 401-406	3.8	151
15	Characterisation of Aquatic Colloids and Macromolecules by Field-Flow Fractionation 2007, 223-276		15
14	Colloidal Transport in Porous Media 2007,		15
13	Transport of Colloids in Filter Columns: Laboratory and Field Experiments 2007, 87-115		
12	Size-based speciation of natural colloidal particles by flow field flow fractionation, inductively coupled plasma-mass spectroscopy, and transmission electron microscopy/X-ray energy dispersive spectroscopy: colloids-trace element interaction. <i>Environmental Science & Environmental & Environme</i>	10.3	95
11	Size fractionation and characterization of natural colloids by flow-field flow fractionation coupled to multi-angle laser light scattering. <i>Journal of Chromatography A</i> , 2006 , 1104, 272-81	4.5	88
10	Field-flow fractionation coupled to multi-angle laser light scattering detectors: Applicability and analytical benefits for the analysis of environmental colloids. <i>Analytica Chimica Acta</i> , 2005 , 552, 166-17	4 ^{6.6}	81

9	Natural sample fractionation by FIFFF-MALLS-TEM: sample stabilization, preparation, pre-concentration and fractionation. <i>Journal of Chromatography A</i> , 2005 , 1093, 156-66	4.5	50	
8	Application of a high-performance liquid chromatography fluorescence detector as a nephelometric turbidity detector following Field-Flow Fractionation to analyse size distributions of environmental colloids. <i>Journal of Chromatography A</i> , 2005 , 1100, 81-9	4.5	25	
7	Comparison of Different Monitoring Programs of the 2002 Summer Flood in the River Elbe. <i>Clean - Soil, Air, Water</i> , 2005 , 33, 404-417		14	
6	3D characterization of natural colloids by FlFFF-MALLS-TEM. <i>Analytical and Bioanalytical Chemistry</i> , 2005 , 383, 549-56	4.4	38	
5	Aquatische Kolloide I: Eine Bersichtsarbeit zur Definition, zu Systemen und zur Relevanz. <i>Grundwasser</i> , 2003 , 8, 203-212	1.1	20	
4	Aquatische Kolloide II: Eine Bersichtsarbeit zur Probennahme, Probenaufbereitung und Charakterisierung. <i>Grundwasser</i> , 2003 , 8, 213-223	1.1	16	
3	Impact of natural nanophases on heavy-metal retention in zeolite-supported reactive filtration facilities for urban run-off treatment. <i>Freseniusl Journal of Analytical Chemistry</i> , 2001 , 371, 652-9		12	
2	Natural colloid characterization using flow-field-flow-fractionation followed by multi-detector analysis. <i>Water Science and Technology</i> , 1998 , 37, 173	2.2	12	
1	Natural Colloids and Nanoparticles in Aquatic and Terrestrial Environments109-161		8	