Jose Ignacio Aizpurua

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6536607/publications.pdf

Version: 2024-02-01

34 545 12 23 papers citations h-index g-index

34 34 34 465
all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Adaptive Power Transformer Lifetime Predictions Through Machine Learning and Uncertainty Modeling in Nuclear Power Plants. IEEE Transactions on Industrial Electronics, 2019, 66, 4726-4737.	7.9	92
2	Uncertainty-Aware Dynamic Reliability Analysis Framework for Complex Systems. IEEE Access, 2018, 6, 29499-29515.	4.2	78
3	Power transformer dissolved gas analysis through Bayesian networks and hypothesis testing. IEEE Transactions on Dielectrics and Electrical Insulation, 2018, 25, 494-506.	2.9	50
4	Supporting group maintenance through prognostics-enhanced dynamic dependability prediction. Reliability Engineering and System Safety, 2017, 168, 171-188.	8.9	43
5	A Model-Based Hybrid Approach for Circuit Breaker Prognostics Encompassing Dynamic Reliability and Uncertainty. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2018, 48, 1637-1648.	9.3	31
6	Dynamic Performance Evaluation of Photovoltaic Power Plant by Stochastic Hybrid Fault Tree Automaton Model. Energies, 2018, 11, 306.	3.1	28
7	On the use of dynamic reliability for an accurate modelling of renewable power plants. Energy, 2018, 151, 605-621.	8.8	26
8	Improved Dynamic Dependability Assessment Through Integration With Prognostics. IEEE Transactions on Reliability, 2017, 66, 893-913.	4.6	21
9	A data-driven long-term metocean data forecasting approach for the design of marine renewable energy systems. Renewable and Sustainable Energy Reviews, 2022, 167, 112751.	16.4	21
10	Improved power transformer condition monitoring under uncertainty through soft computing and probabilistic health index. Applied Soft Computing Journal, 2019, 85, 105530.	7.2	20
11	SHyFTOO, an object-oriented Monte Carlo simulation library for the modeling of Stochastic Hybrid Fault Tree Automaton. Expert Systems With Applications, 2020, 146, 113139.	7.6	20
12	Modelling and Resolution of Dynamic Reliability Problems by the Coupling of Simulink and the Stochastic Hybrid Fault Tree Object Oriented (SHyFTOO) Library. Information (Switzerland), 2019, 10, 283.	2.9	15
13	Uncertainty-Aware Fusion of Probabilistic Classifiers for Improved Transformer Diagnostics. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2021, 51, 621-633.	9.3	12
14	A Model-Based Extension to HiP-HOPS for Dynamic Fault Propagation Studies. Lecture Notes in Computer Science, 2017, , 163-178.	1.3	11
15	Coherence region of the Priorityâ€AND gate: Analytical and numerical examples. Quality and Reliability Engineering International, 2018, 34, 107-115.	2.3	11
16	Application of the D3H2 Methodology for the Cost-Effective Design of Dependable Systems. Safety, 2016, 2, 9.	1.7	10
17	Probabilistic forecasting informed failure prognostics framework for improved RUL prediction under uncertainty: A transformer case study. Reliability Engineering and System Safety, 2022, 226, 108676.	8.9	10
18	Selecting appropriate machine learning classifiers for DGA diagnosis., 2017,,.		7

#	Article	IF	Citations
19	A Diagnostics Framework for Underground Power Cables Lifetime Estimation Under Uncertainty. IEEE Transactions on Power Delivery, 2021, 36, 2014-2024.	4.3	7
20	On Costâ€effective Reuse of Components in the Design of Complex Reconfigurable Systems. Quality and Reliability Engineering International, 2017, 33, 1387-1406.	2.3	6
21	Performance assessment of domestic photovoltaic power plant with a storage system. IFAC-PapersOnLine, 2018, 51, 746-751.	0.9	4
22	Explicit Modelling and Treatment of Repair in Prediction of Dependability. IEEE Transactions on Dependable and Secure Computing, 2020, 17, 1147-1162.	5.4	4
23	Improving the accuracy of transformer DGA diagnosis in the presence of conflicting evidence. , 2017, , .		3
24	On the definition of a risk index based on long-term metocean data to assist in the design of Marine Renewable Energy systems. Ocean Engineering, 2021, 242, 110080.	4.3	3
25	On the use of probabilistic model-checking for the verification of prognostics applications. , 2015, , .		2
26	Towards a Comprehensive DGA Health Index. , 2018, , .		2
27	FPGA-Based Stochastic Activity Networks for Online Reliability Monitoring. IEEE Transactions on Industrial Electronics, 2020, 67, 5000-5011.	7.9	2
28	RAMS analysis: How reliability engineer and risk analysis tools can be applied to improve asset management on train life cycle., 2013,, 1773-1780.		2
29	Context-informed conditional anomaly detection approach for wave power plants: The case of air turbines. Ocean Engineering, 2022, 253, 111196.	4.3	2
30	Multiple-person tracking devoted to distributed multi smart camera networks. , 2010, , .		1
31	A cost-benefit approach for the evaluation of prognostics-updated maintenance strategies in complex dynamic systems. , 2016, , 1064-1071.		1
32	FPGA-Based Degradation and Reliability Monitor for Underground Cables. Sensors, 2019, 19, 1995.	3.8	0
33	Towards a Hybrid Power Cable Health Index for Medium Voltage Power Cable Condition Monitoring. , 2019, , .		0
34	Towards Dependability and Energy Aware Asset Management Framework for Maintenance Planning in Smart Grids. Lecture Notes in Computer Science, 2019, , 188-203.	1.3	0