Yong Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6536567/publications.pdf

Version: 2024-02-01

265 papers 10,564 citations

28190 55 h-index 54797 84 g-index

267 all docs

 $\begin{array}{c} 267 \\ \text{docs citations} \end{array}$

times ranked

267

10967 citing authors

#	Article	IF	Citations
1	Adhesion and proliferation of OCT-1 osteoblast-like cells on micro- and nano-scale topography structured poly(l-lactide). Biomaterials, 2005, 26, 4453-4459.	5 . 7	322
2	Progress and perspectives in PTFE membrane: Preparation, modification, and applications. Journal of Membrane Science, 2018, 549, 332-349.	4.1	249
3	Interfacial polymerization of covalent organic frameworks (COFs) on polymeric substrates for molecular separations. Journal of Membrane Science, 2018, 566, 197-204.	4.1	236
4	Aqueous/ionic liquid interfacial polymerization for preparing polyaniline nanoparticles. Polymer, 2004, 45, 3017-3019.	1.8	170
5	An Emerging Poreâ€Making Strategy: Confined Swellingâ€Induced Pore Generation in Block Copolymer Materials. Advanced Materials, 2011, 23, 2134-2148.	11.1	156
6	Facile Synthesis of Polyaniline Nanofibers Using Chloroaurate Acid as the Oxidant. Langmuir, 2005, 21, 833-836.	1.6	147
7	Membranes with Highly Ordered Straight Nanopores by Selective Swelling of Fast Perpendicularly Aligned Block Copolymers. ACS Nano, 2013, 7, 9961-9974.	7.3	139
8	Fabrication of Ruthenium-Carbon Nanotube Nanocomposites in Supercritical Water. Advanced Materials, 2005, 17, 928-932.	11.1	136
9	Fast Desalination by Multilayered Covalent Organic Framework (COF) Nanosheets. ACS Applied Materials & Samp; Interfaces, 2019, 11, 16847-16854.	4.0	135
10	Nanostructured Gold Films for SERS by Block Copolymer-Templated Galvanic Displacement Reactions. Nano Letters, 2009, 9, 2384-2389.	4.5	133
11	Recent advances of loose nanofiltration membranes for dye/salt separation. Separation and Purification Technology, 2022, 285, 120228.	3.9	131
12	Electrospun nanofiber substrates that enhance polar solvent separation from organic compounds in thin-film composites. Journal of Materials Chemistry A, 2018, 6, 15047-15056.	5.2	125
13	Benzothiazole-based fluorescent sensor for hypochlorite detection and its application for biological imaging. Sensors and Actuators B: Chemical, 2017, 243, 22-28.	4.0	124
14	PVDF membranes with simultaneously enhanced permeability and selectivity by breaking the tradeoff effect via atomic layer deposition of TiO2. Journal of Membrane Science, 2013, 442, 57-64.	4.1	122
15	Unusual Air Filters with Ultrahigh Efficiency and Antibacterial Functionality Enabled by ZnO Nanorods. ACS Applied Materials & Interfaces, 2015, 7, 21538-21544.	4.0	121
16	Two-Dimensional Covalent Triazine Framework Membrane for Helium Separation and Hydrogen Purification. ACS Applied Materials & Samp; Interfaces, 2016, 8, 8694-8701.	4.0	121
17	Unidirectional diffusion synthesis of covalent organic frameworks (COFs) on polymeric substrates for dye separation. Journal of Membrane Science, 2019, 586, 274-280.	4.1	120
18	Chitosan-Cross-Linked Graphene Oxide/Carboxymethyl Cellulose Aerogel Globules with High Structure Stability in Liquid and Extremely High Adsorption Ability. ACS Sustainable Chemistry and Engineering, 2019, 7, 8775-8788.	3.2	120

#	Article	IF	Citations
19	Nanoporous Metal Membranes with Bicontinuous Morphology from Recyclable Blockâ€Copolymer Templates. Advanced Materials, 2010, 22, 2068-2072.	11.1	118
20	Plasma activation and atomic layer deposition of TiO2 on polypropylene membranes for improved performances of lithium-ion batteries. Journal of Membrane Science, 2014, 458, 217-224.	4.1	113
21	Ultra-permeable polyamide membranes harvested by covalent organic framework nanofiber scaffolds: a two-in-one strategy. Chemical Science, 2019, 10, 9077-9083.	3.7	108
22	Nondestructive Creation of Ordered Nanopores by Selective Swelling of Block Copolymers: Toward Homoporous Membranes. Accounts of Chemical Research, 2016, 49, 1401-1408.	7.6	106
23	Highly permeable and antifouling reverse osmosis membranes with acidified graphitic carbon nitride nanosheets as nanofillers. Journal of Materials Chemistry A, 2017, 5, 19875-19883.	5.2	103
24	Influence of lipid composition on the phase transition temperature of liposomes composed of both DPPC and HSPC. Drug Development and Industrial Pharmacy, 2013, 39, 197-204.	0.9	97
25	Facile Synthesis of Dual-Layer Organic Solvent Nanofiltration (OSN) Hollow Fiber Membranes. ACS Sustainable Chemistry and Engineering, 2015, 3, 3019-3023.	3.2	97
26	Oleic acid as the capping agent in the synthesis of noble metal nanoparticles in imidazolium-based ionic liquids. Chemical Communications, 2006, , 2545.	2.2	95
27	Structure design and applications of dual-layer polymeric membranes. Journal of Membrane Science, 2018, 562, 85-111.	4.1	94
28	Nanoscopic Morphologies in Block Copolymer Nanorods as Templates for Atomic‣ayer Deposition of Semiconductors. Advanced Materials, 2009, 21, 2763-2766.	11,1	93
29	A highly specific fluorescent probe for hypochlorite based on fluorescein derivative and its endogenous imaging in living cells. Dyes and Pigments, 2015, 120, 22-29.	2.0	90
30	Swelling-induced mesoporous block copolymer membranes with intrinsically active surfaces for size-selective separation. Journal of Materials Chemistry, 2012, 22, 20542.	6.7	89
31	Precise pore size tuning and surface modifications of polymeric membranes using the atomic layer deposition technique. Journal of Membrane Science, 2011, 385-386, 1-9.	4.1	84
32	Upgrading polysulfone ultrafiltration membranes by blending with amphiphilic block copolymers: Beyond surface segregation. Journal of Membrane Science, 2016, 505, 53-60.	4.1	84
33	Fabrication and characterization of magnetic carbon nanotube composites. Journal of Materials Chemistry, 2005, 15, 4497.	6.7	81
34	Atomic layer deposition of alumina on porous polytetrafluoroethylene membranes for enhanced hydrophilicity and separation performances. Journal of Membrane Science, 2012, 415-416, 435-443.	4.1	81
35	Modification of ceramic membranes for pore structure tailoring: The atomic layer deposition route. Journal of Membrane Science, 2012, 397-398, 17-23.	4.1	80
36	Secondary growth of covalent organic frameworks (COFs) on porous substrates for fast desalination. Journal of Membrane Science, 2020, 604, 118090.	4.1	79

#	Article	IF	Citations
37	Highly Porous Metal Oxide Networks of Interconnected Nanotubes by Atomic Layer Deposition. Nano Letters, 2012, 12, 5033-5038.	4.5	78
38	Growing covalent organic frameworks on porous substrates for molecule-sieving membranes with pores tunable from ultra- to nanofiltration. Journal of Membrane Science, 2019, 576, 116-122.	4.1	75
39	Polypropylene/Silica Nanocomposites Prepared by in-Situ Solâ^'Gel Reaction with the Aid of CO2. Macromolecules, 2005, 38, 5617-5624.	2.2	72
40	Hydrophilization of porous polypropylene membranes by atomic layer deposition of TiO2 for simultaneously improved permeability and selectivity. Journal of Membrane Science, 2013, 448, 215-222.	4.1	71
41	Enhanced response speed and selectivity of fluorescein-based H2S probe via the cleavage of nitrobenzene sulfonyl ester assisted by ortho aldehyde groups. Biosensors and Bioelectronics, 2017, 87, 96-100.	5.3	71
42	Structure and conformation properties of 1-alkyl-3-methylimidazolium halide ionic liquids: A density-functional theory study. Journal of Chemical Physics, 2005, 123, 174501.	1.2	70
43	Polydiacetylene-based sensor for highly sensitive and selective Pb2+ detection. Dyes and Pigments, 2015, 120, 307-313.	2.0	69
44	A highly sensitive and selective ratiometric fluorescent sensor for Zn2+ ion based on ICT and FRET. Dyes and Pigments, 2014, 102, 301-307.	2.0	68
45	Mesoporous Block Copolymer Nanorods by Swelling-Induced Morphology Reconstruction. Nano Letters, 2008, 8, 3548-3553.	4.5	67
46	Atomic-layer-deposition-enabled nonwoven membranes with hierarchical ZnO nanostructures for switchable water/oil separations. Journal of Membrane Science, 2015, 493, 478-485.	4.1	66
47	A mitochondria-targeting supramolecular photosensitizer based on pillar[5]arene for photodynamic therapy. Chemical Communications, 2017, 53, 3126-3129.	2.2	66
48	Ammonium-Bearing Dinuclear Copper(II) Complex: A Highly Selective and Sensitive Colorimetric Probe for Pyrophosphate. Organic Letters, 2014, 16, 2220-2223.	2.4	65
49	Advanced ultrafiltration membranes by leveraging microphase separation in macrophase separation of amphiphilic polysulfone block copolymers. Journal of Membrane Science, 2017, 525, 342-348.	4.1	64
50	Layer-by-Layer Synthesis of Covalent Organic Frameworks on Porous Substrates for Fast Molecular Separations. ACS Applied Nano Materials, 2018, 1, 6320-6326.	2.4	63
51	Preparation of Hyflon AD60/PVDF composite hollow fiber membranes for vacuum membrane distillation. Separation and Purification Technology, 2016, 157, 1-8.	3.9	62
52	Enhanced antifouling and antimicrobial thin film nanocomposite membranes with incorporation of Palygorskite/titanium dioxide hybrid material. Journal of Colloid and Interface Science, 2019, 537, 1-10.	5.0	62
53	Flexible and Robust Three-Dimensional Covalent Organic Framework Membranes for Precise Separations under Extreme Conditions. Nano Letters, 2021, 21, 8355-8362.	4.5	62
54	How Pore Hydrophilicity Influences Water Permeability?. Research, 2019, 2019, 2581241.	2.8	61

#	Article	IF	CITATIONS
55	Enhancing the hydrophilicity and water permeability of polypropylene membranes by nitric acid activation and metal oxide deposition. Journal of Membrane Science, 2015, 487, 109-116.	4.1	59
56	Influence of membrane hydrophilicity on water permeability: An experimental study bridging simulations. Journal of Membrane Science, 2020, 604, 118087.	4.1	58
57	Table-salt enabled interface-confined synthesis of covalent organic framework (COF) nanosheets. Chemical Science, 2020, 11, 989-996.	3.7	57
58	pH Sensitive polypropylene porous membrane prepared by grafting acrylic acid in supercritical carbon dioxide. Polymer, 2004, 45, 855-860.	1.8	56
59	Atomic layer deposition of TiO2 on carbon-nanotube membranes for enhanced capacitive deionization. Separation and Purification Technology, 2019, 213, 70-77.	3.9	56
60	Surface-active isoporous membranes nondestructively derived from perpendicularly aligned block copolymers for size-selective separation. Journal of Membrane Science, 2014, 466, 229-237.	4.1	54
61	A fluorescent probe with high selectivity to glutathione over cysteine and homocysteine based on positive effect of carboxyl on nucleophilic substitution in CTAB. Sensors and Actuators B: Chemical, 2014, 192, 708-713.	4.0	53
62	Single-Layered Nanosheets of Covalent Triazine Frameworks (CTFs) by Mild Oxidation for Molecular-Sieving Membranes. ACS Applied Materials & Interfaces, 2020, 12, 18944-18951.	4.0	53
63	Swelling-Induced Morphology Reconstruction in Block Copolymer Nanorods: Kinetics and Impact of Surface Tension During Solvent Evaporation. ACS Nano, 2011, 5, 1928-1938.	7.3	52
64	A highly sensitive and selective fluorescein-based fluorescence probe for Au3+ and its application in living cell imaging. Sensors and Actuators B: Chemical, 2015, 209, 1005-1010.	4.0	52
65	Solvothermal synthesis of mesoporous Eu2O3–TiO2 composites. Microporous and Mesoporous Materials, 2005, 81, 169-174.	2.2	51
66	ALD-seeded hydrothermally-grown Ag/ZnO nanorod PTFE membrane as efficient indoor air filter. Journal of Membrane Science, 2017, 531, 86-93.	4.1	51
67	A PEGylated colorimetric and turn-on fluorescent sensor based on BODIPY for Hg(<scp>ii</scp>) detection in water. Polymer Chemistry, 2015, 6, 4279-4289.	1.9	50
68	Stitching nanosheets of covalent organic frameworks to build aligned nanopores in nanofiltration membranes for precise ion separations. Journal of Membrane Science, 2021, 618, 118754.	4.1	50
69	Nanopatterned Carbon Films with Engineered Morphology by Direct Carbonization of UV-Stabilized Block Copolymer Films. Nano Letters, 2008, 8, 3993-3997.	4.5	49
70	Plasma activation of porous polytetrafluoroethylene membranes for superior hydrophilicity and separation performances via atomic layer deposition of TiO2. Journal of Membrane Science, 2013, 443, 62-68.	4.1	49
71	Recent advances in organic–inorganic well-defined hybrid polymers using controlled living radical polymerization techniques. Polymer Chemistry, 2016, 7, 3950-3976.	1.9	49
72	An ESIPT-based fluorescent probe for highly selective detection of glutathione in aqueous solution and living cells. Dyes and Pigments, 2016, 129, 156-162.	2.0	49

#	Article	IF	CITATIONS
73	Ceramic tubular nanofiltration membranes with tunable performances by atomic layer deposition and calcination. Journal of Membrane Science, 2017, 528, 95-102.	4.1	47
74	The establishment of high-performance anti-fouling nanofiltration membranes via cooperation of annular supramolecular Cucurbit[6]uril and dendritic polyamidoamine. Journal of Membrane Science, 2020, 600, 117863.	4.1	47
75	Micropatterned Polymer Surfaces Induced by Nonsolvent. Langmuir, 2006, 22, 1928-1931.	1.6	46
76	Amphiphobic Polytetrafluoroethylene Membranes for Efficient Organic Aerosol Removal. ACS Applied Materials & Mater	4.0	46
77	Resistance of water transport in carbon nanotube membranes. Nanoscale, 2018, 10, 13242-13249.	2.8	45
78	Covalent Organic Framework-Mediated Thin-Film Composite Polyamide Membranes toward Precise Ion Sieving. ACS Applied Materials & Sieving. ACS Applied Materials & Sieving. 14, 3427-3436.	4.0	45
79	Encapsulation of polystyrene within carbon nanotubes with the aid of supercritical CO2. Carbon, 2004, 42, 458-460.	5.4	44
80	Carbon Microspheres with Supported Silver Nanoparticles Prepared from Pollen Grains. Langmuir, 2005, 21, 10846-10849.	1.6	44
81	Nanoslitting of phase-separated block copolymers by solvent swelling for membranes with ultrahigh flux and sharp selectivity. Chemical Communications, 2014, 50, 12022-12025.	2.2	43
82	New surface crossâ€linking method to fabricate positively charged nanofiltration membranes for dye removal. Journal of Chemical Technology and Biotechnology, 2018, 93, 2281-2291.	1.6	43
83	Design of Blockâ€Copolymer Nanoporous Membranes for Robust and Safer Lithiumâ€lon Battery Separators. Advanced Science, 2021, 8, 2003096.	5.6	43
84	High damping property of microcellular polymer prepared by friendly environmental approach. Journal of Supercritical Fluids, 2005, 33, 259-267.	1.6	41
85	Mesoporous Polymer Nanofibers by Infiltration of Block Copolymers with Sacrificial Domains into Porous Alumina. Chemistry of Materials, 2008, 20, 379-381.	3.2	41
86	lon Rejection in Covalent Organic Frameworks: Revealing the Overlooked Effect of In-Pore Transport. ACS Applied Materials & Samp; Interfaces, 2019, 11, 45246-45255.	4.0	40
87	Responsive Micellar Films of Amphiphilic Block Copolymer Micelles: Control on Micelle Opening and Closing. Langmuir, 2010, 26, 8869-8874.	1.6	39
88	Photocontrollable release and enhancement of photodynamic therapy based on host–guest supramolecular amphiphiles. Journal of Materials Chemistry B, 2015, 3, 7417-7426.	2.9	39
89	Pressure-modulated synthesis of self-repairing covalent organic frameworks (COFs) for high-flux nanofiltration. Journal of Membrane Science, 2021, 618, 118727.	4.1	39
90	How Pore Hydrophilicity Influences Water Permeability?. Research, 2019, 2019, 1-10.	2.8	39

#	Article	IF	CITATION
91	Dye adsorption on zinc oxide nanoparticulates atomicâ€layerâ€deposited on polytetrafluoroethylene membranes. AICHE Journal, 2016, 62, 3982-3991.	1.8	38
92	Substrate matters: The influences of substrate layers on the performances of thin-film composite reverse osmosis membranes. Chinese Journal of Chemical Engineering, 2017, 25, 1676-1684.	1.7	38
93	Selective Swelling of Block Copolymers: An Upscalable Greener Process to Ultrafiltration Membranes?. Macromolecules, 2020, 53, 5-17.	2.2	38
94	Secondary growth of bi-layered covalent organic framework nanofilms with offset channels for desalination. Journal of Membrane Science, 2021, 624, 119122.	4.1	38
95	Porous block copolymer separation membranes for 21st century sanitation and hygiene. Chemical Society Reviews, 2021, 50, 6333-6348.	18.7	38
96	Selective Hydrogenation of Nitroarenes and Olefins over Rhodium Nanoparticles on Hydroxyapatite. Advanced Synthesis and Catalysis, 2012, 354, 2689-2694.	2.1	37
97	Extremely Efficient and Recyclable Absorbents for Oily Pollutants Enabled by Ultrathin-Layered Functionalization. ACS Applied Materials & Samp; Interfaces, 2014, 6, 18816-18823.	4.0	37
98	Water Flow inside Polamide Reverse Osmosis Membranes: A Non-Equilibrium Molecular Dynamics Study. Journal of Physical Chemistry B, 2017, 121, 1715-1722.	1.2	37
99	Atomic-layer-deposition-enabled thin-film composite membranes of polyimide supported on nanoporous anodized alumina. Journal of Membrane Science, 2017, 535, 56-62.	4.1	37
100	Additive-free preparation of hemodialysis membranes from block copolymers of polysulfone and polyethylene glycol. Journal of Membrane Science, 2021, 618, 118690.	4.1	37
101	Phase-Separation-Induced Micropatterned Polymer Surfaces and Their Applications. Advanced Functional Materials, 2005, 15, 655-663.	7.8	36
102	Antifouling ultrafiltration membranes by selective swelling of polystyrene/poly(ethylene oxide) block copolymers. Journal of Membrane Science, 2017, 542, 226-232.	4.1	36
103	Selective Swelling of Electrospun Block Copolymers: From Perforated Nanofibers to High Flux and Responsive Ultrafiltration Membranes. Macromolecules, 2018, 51, 2283-2292.	2.2	36
104	Calibration of optically trapped nanotools. Nanotechnology, 2010, 21, 175501.	1.3	35
105	Highly ordered TiO sub>2nanostructures by sequential vapour infiltration of block copolymer micellar films in an atomic layer deposition reactor. Journal of Materials Chemistry C, 2013, 1, 1029-1036.	2.7	35
106	Replication of biological organizations through a supercritical fluid route. Chemical Communications, 2005, , 2948.	2.2	34
107	Atomic layer deposition of metal oxides on carbon nanotube fabrics for robust, hydrophilic ultrafiltration membranes. Journal of Membrane Science, 2018, 550, 246-253.	4.1	34
108	Atomic layer deposition for membrane modification, functionalization and preparation: A review. Journal of Membrane Science, 2022, 658, 120740.	4.1	34

#	Article	IF	CITATIONS
109	Fabrication of ceramic membrane supported palladium catalyst and its catalytic performance in liquid-phase hydrogenation reaction. Chemical Engineering Journal, 2017, 313, 1556-1566.	6.6	33
110	Nanoporous block copolymer membranes immobilized with gold nanoparticles for continuous flow catalysis. Polymer Chemistry, 2019, 10, 1642-1649.	1.9	33
111	Fabrication of Supported Mesoporous TiO ₂ Membranes: Matching the Assembled and Interparticle Pores for an Improved Ultrafiltration Performance. ACS Applied Materials & Description of the Interfaces, 2009, 1, 1607-1612.	4.0	32
112	Turning Low-Cost Filter Papers to Highly Efficient Membranes for Oil/Water Separation by Atomic-Layer-Deposition-Enabled Hydrophobization. Industrial & Engineering Chemistry Research, 2014, 53, 16516-16522.	1.8	32
113	Isoporous membranes with gradient porosity by selective swelling of UV-crosslinked block copolymers. Journal of Membrane Science, 2015, 476, 449-456.	4.1	32
114	Atomic layer deposition fabricating of ceramic nanofiltration membranes for efficient separation of dyes from water. AICHE Journal, 2018, 64, 2670-2678.	1.8	32
115	Enabling Covalent Organic Framework Nanofilms for Molecular Separation: Perforated Polymer-Assisted Transfer. ACS Applied Materials & Interfaces, 2019, 11, 44783-44791.	4.0	32
116	Multifunctional hybrid porous filters with hierarchical structures for simultaneous removal of indoor VOCs, dusts and microorganisms. Nanoscale, 2017, 9, 5433-5444.	2.8	31
117	Nanoporous polysulfones with in situ PEGylated surfaces by a simple swelling strategy using paired solvents. Chemical Communications, 2017, 53, 9105-9108.	2.2	31
118	Molecularly engineered three-dimensional covalent organic framework protection films for highly stable zinc anodes in aqueous electrolyte. Energy Storage Materials, 2022, 51, 391-399.	9.5	31
119	Carbon nanotube/poly(2,4-hexadiyne-1,6-diol) nanocomposites prepared with the aid of supercritical CO2. Chemical Communications, 2004, , 2190.	2.2	30
120	Water Flow through Interlayer Channels of Two-Dimensional Materials with Various Hydrophilicities. Journal of Physical Chemistry C, 2018, 122, 15772-15779.	1.5	30
121	A promising carbon fiber-based photocatalyst with hierarchical structure for dye degradation. RSC Advances, 2017, 7, 22234-22242.	1.7	29
122	Efficient perovskite solar cells based on novel three-dimensional TiO2 network architectures. Science Bulletin, 2016, 61, 778-786.	4.3	28
123	Effect of hydrophilicity on water transport through sub-nanometer pores. Journal of Membrane Science, 2020, 611, 118297.	4.1	28
124	Dual-layered covalent organic framework/MXene membranes with short paths for fast water treatment. Journal of Membrane Science, 2022, 658, 120761.	4.1	28
125	Chemoselective Transfer Hydrogenation of Aldehydes and Ketones with a Heterogeneous Iridium Catalyst in Water. Catalysis Letters, 2015, 145, 1008-1013.	1.4	27
126	Filtration-Based Synthesis of Micelle-Derived Composite Membranes for High-Flux Ultrafiltration. ACS Applied Materials & Samp; Interfaces, 2015, 7, 6974-6981.	4.0	27

#	Article	IF	CITATION
127	Highly efficient palladium catalysts supported on nitrogen contained polymers for Suzuki-Miyaura reaction. Catalysis Communications, 2016, 82, 24-28.	1.6	27
128	Homoporous Membranes with Tailored Pores by Soaking Block Copolymer/Homopolymer Blends in Selective Solvents: Dissolution versus Swelling. Macromolecules, 2016, 49, 215-223.	2.2	27
129	Advanced SERS Sensor Based on Capillarity-Assisted Preconcentration through Gold Nanoparticle-Decorated Porous Nanorods. Small, 2017, 13, 1603947.	5.2	27
130	Tailoring TiO2 membranes for nanofiltration and tight ultrafiltration by leveraging molecular layer deposition and crystallization. Journal of Membrane Science, 2019, 578, 149-155.	4.1	27
131	Nanofluidic Behaviors of Water and Ions in Covalent Triazine Framework (CTF) Multilayers. Small, 2020, 16, e1903879.	5.2	27
132	CO2-responsive graphene oxide nanofiltration membranes for switchable rejection to cations and anions. Journal of Membrane Science, 2019, 592, 117374.	4.1	26
133	Reduced air sensitivity and improved electrochemical stability of P2–Na2/3Mn1/2Fe1/4Co1/4O2 through atomic layer deposition-assisted Al2O3 coating. Composites Part B: Engineering, 2019, 173, 106913.	5.9	26
134	Chemically Laminating Graphene Oxide Nanosheets with Phenolic Nanomeshes for Robust Membranes with Fast Desalination. Nano Letters, 2021, 21, 8236-8243.	4. 5	26
135	Enhanced Catalytic Properties of Palladium Nanoparticles Deposited on a Silanized Ceramic Membrane Support with a Flow-Through Method. Industrial & Engineering Chemistry Research, 2013, 52, 14099-14106.	1.8	25
136	Atomic layer deposition of polyimide on microporous polyethersulfone membranes for enhanced and tunable performances. AICHE Journal, 2014, 60, 3614-3622.	1.8	25
137	Fabrication of interconnected mesoporous carbon sheets for use in high-performance supercapacitors. New Carbon Materials, 2017, 32, 213-220.	2.9	25
138	Atomic layer deposition of hybrid metal oxides on carbon nanotube membranes for photodegradation of dyes. Composites Communications, 2019, 12, 39-46.	3.3	25
139	Thickness-dependent ion rejection in nanopores. Journal of Membrane Science, 2020, 601, 117899.	4.1	25
140	Uniform and Conformal Carbon Nanofilms Produced Based on Molecular Layer Deposition. Materials, 2013, 6, 5602-5612.	1.3	24
141	Orthogonal Approach to Construct Cell-Like Vesicles via Pillar[5]arene-Based Amphiphilic Supramolecular Polymers. ACS Macro Letters, 2016, 5, 112-117.	2.3	24
142	Selective swelling of block copolymer ultrafiltration membranes for enhanced water permeability and fouling resistance. Journal of Membrane Science, 2018, 558, 106-112.	4.1	24
143	Metal ions †sewing' isoporous membranes with polystyrene-block-poly (acrylic acid) block copolymer. Journal of Membrane Science, 2019, 587, 117086.	4.1	24
144	The hydroxylation of benzene to phenol over heteropolyacid encapsulated in silica. Catalysis Communications, 2014, 55, 34-37.	1.6	23

#	Article	IF	Citations
145	A dinuclear-copper(II) complex-based sensor for pyrophosphate and its applications to detecting pyrophosphatase activity and monitoring polymerase chain reaction. Sensors and Actuators B: Chemical, 2016, 233, 591-598.	4.0	23
146	Direct silanization of polyurethane foams for efficient selective absorption of oil from water. AICHE Journal, 2017, 63, 2232-2240.	1.8	23
147	Colorimetric and fluorometric assays for acetylcholinesterase and its inhibitors screening based on a fluorescein derivate. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 552-555.	1.0	22
148	Selective and recyclable rhodium nanocatalysts for the reductive N-alkylation of nitrobenzenes and amines with aldehydes. RSC Advances, 2015, 5, 56936-56941.	1.7	22
149	N-Doping Carbon-Nanotube Membrane Electrodes Derived from Covalent Organic Frameworks for Efficient Capacitive Deionization. Langmuir, 2020, 36, 12030-12037.	1.6	22
150	Boron removal by water molecules inside covalent organic framework (COF) multilayers. Desalination, 2022, 526, 115548.	4.0	22
151	Synthesis and characterization of polyether structure carbon nitride. Journal of Materials Research, 2004, 19, 1736-1741.	1.2	21
152	Compressed-CO2-Assisted Patterning of Polymers. Journal of Physical Chemistry B, 2005, 109, 12376-12379.	1.2	21
153	Highly Permeable and Robust Responsive Nanoporous Membranes by Selective Swelling of Triblock Terpolymers with a Rubbery Block. Macromolecules, 2016, 49, 182-191.	2.2	21
154	<i>In Situ</i> Growth of Cationic Covalent Organic Frameworks (COFs) for Mixed Matrix Membranes with Enhanced Performances. Langmuir, 2020, 36, 10970-10978.	1.6	21
155	Effect of hydrophilicity on ion rejection of sub-nanometer pores. Separation and Purification Technology, 2021, 257, 117937.	3.9	21
156	Insights into membrane fouling of a side-stream ceramic membrane reactor for phenol hydroxylation over ultrafine TS-1. Chemical Engineering Journal, 2014, 239, 373-380.	6.6	20
157	Highly permeable nanoporous block copolymer membranes by machine-casting on nonwoven supports: An upscalable route. Journal of Membrane Science, 2017, 533, 201-209.	4.1	20
158	Design of gradient nanopores in phenolics for ultrafast water permeation. Chemical Science, 2019, 10, 2093-2100.	3.7	20
159	Simultaneous zwitterionization and selective swelling-induced pore generation of block copolymers for antifouling ultrafiltration membranes. Journal of Membrane Science, 2020, 599, 117833.	4.1	20
160	Pressure-Dependent Ion Rejection in Nanopores. Journal of Physical Chemistry C, 2020, 124, 20498-20505.	1.5	20
161	Hollow-fiber membranes of block copolymers by melt spinning and selective swelling. Journal of Membrane Science, 2021, 632, 119374.	4.1	20
162	Large-pore covalent organic frameworks for ultra-fast tight ultrafiltration (TUF). Journal of Membrane Science, 2021, 637, 119635.	4.1	20

#	Article	IF	Citations
163	Stretched homoporous composite membranes with elliptic nanopores for external-energy-free ultrafiltration. Chemical Communications, 2016, 52, 6899-6902.	2.2	19
164	Molecular Simulations of Water Transport Resistance in Polyamide RO Membranes: Interfacial and Interior Contributions. Engineering, 2020, 6, 577-584.	3.2	19
165	Selective-swelling-induced porous block copolymers and their robust TiO2 replicas via atomic layer deposition for antireflective applications. Journal of Materials Chemistry C, 2013, 1, 5133.	2.7	18
166	Interconnected mesoporous carbon sheet for supercapacitors from low-cost resources. Materials Letters, 2015, 158, 237-240.	1.3	18
167	Depositing lignin on membrane surfaces for simultaneously upgraded reverse osmosis performances: An upscalable route. AICHE Journal, 2017, 63, 2221-2231.	1.8	18
168	Synthesis of montmorillonite/polystyrene nanocomposites in supercritical carbon dioxide. Journal of Applied Polymer Science, 2004, 94, 1194-1197.	1.3	17
169	A simple route to micropatterned polymer surfacesElectronic Supplementary Information (ESI) available: SEM images of other concave-patterned polymer surfaces. See http://www.rsc.org/suppdata/cc/b3/b314970f/. Chemical Communications, 2004, , 800.	2.2	17
170	Water-Dispersible, Uniform Nanospheres by Heating-Enabled Micellization of Amphiphilic Block Copolymers in Polar Solvents. Langmuir, 2012, 28, 3011-3017.	1.6	17
171	<i>In Situ</i> Trapped and Immobilized Palladium Nanoparticles as Active and Clean Catalysts for Suzuki–Miyaura Reaction. Advanced Synthesis and Catalysis, 2015, 357, 2827-2832.	2.1	17
172	Block copolymer ultrafiltration membranes by spray coating coupled with selective swelling. Journal of Membrane Science, 2020, 598, 117656.	4.1	17
173	Zwitterionization of Tertiary Amines in Nanoporous Block Copolymers: toward Fouling-Resistant Ultrafiltration Membranes. Macromolecules, 2021, 54, 4236-4245.	2.2	17
174	Masking covalent organic frameworks (COFs) with loose polyamide networks for precise nanofiltration. Separation and Purification Technology, 2022, 283, 120233.	3.9	17
175	Stretching induces pore formation in the \hat{l}^2 -nucleated polypropylene/graphene oxide composite. Composites Science and Technology, 2014, 99, 59-66.	3.8	16
176	Monolithic Membranes with Designable Pore Geometries and Sizes via Retarded Evaporation of Block Copolymer Supramolecules. Macromolecules, 2015, 48, 8471-8479.	2.2	16
177	Selective swelling induced pore generation of amphiphilic block copolymers: The role of swelling agents. Journal of Polymer Science, Part B: Polymer Physics, 2016, 54, 926-933.	2.4	16
178	One-Step Synthesis of Carbon-Hybridized ZnO on Polymeric Foams by Atomic Layer Deposition for Efficient Absorption of Oils from Water. Industrial & Engineering Chemistry Research, 2018, 57, 1269-1276.	1.8	16
179	Atomic layer deposition of TiO2 on carbon-nanotubes membrane for capacitive deionization removal of chromium from water. Chinese Journal of Chemical Engineering, 2022, 45, 15-21.	1.7	16
180	Three-Dimensional Covalent Organic Framework Membranes: Synthesis by Oligomer Interfacial Ripening and Application in Precise Separations. Macromolecules, 2022, 55, 3259-3266.	2.2	16

#	Article	IF	Citations
181	Compressed CO2-enhanced solubilization of 1-butyl-3-methylimidazolium tetrafluoroborate in reverse micelles of Triton X-100. Journal of Chemical Physics, 2004, 121, 7408-7412.	1.2	15
182	Fabrication of Flowerlike Polymer Superstructures Using Polymer/Zeolite Composites Prepared with Supercritical CO2. Journal of Physical Chemistry B, 2005, 109, 2605-2609.	1.2	15
183	Atomic Layer Deposition on Block Copolymer Membranes with Gyroidal Nanopores Toward Periodically Nanostructured Vapor Sensors: Nanotubes versus Nanorods. Advanced Materials Interfaces, 2016, 3, 1600017.	1.9	15
184	Nanoporous Films with Superior Resistance to Protein Adsorption by Selective Swelling of Polystyrene- <i>block</i> -poly(ethylene oxide). Industrial & Engineering Chemistry Research, 2016, 55, 8133-8140.	1.8	15
185	<i>In Situ</i> Cavitation of Phenolic Supramolecules with PEO–PPO–PEO Block Copolymers by Friedel–Crafts Alkylation toward Ordered Nanoporous Polymers. Industrial & Engineering Chemistry Research, 2016, 55, 6398-6404.	1.8	15
186	Facile synthesis of bimodal nanoporous carbons by templating selective Swelling-induced mesoporous block copolymers. Chemical Engineering Journal, 2017, 313, 1295-1301.	6.6	15
187	Atomic layer deposition of Al 2 O 3 on porous polypropylene hollow fibers for enhanced membrane performances. Chinese Journal of Chemical Engineering, 2018, 26, 695-700.	1.7	15
188	Transport mechanism of water molecules passing through polyamide/COF mixed matrix membranes. Physical Chemistry Chemical Physics, 2019, 21, 26591-26597.	1.3	15
189	A Mini Review on Antiwetting Studies in Membrane Distillation for Textile Wastewater Treatment. Processes, 2021, 9, 243.	1.3	15
190	Selective Reduction of Nitroarenes with Molybdenum Disulfide. Chinese Journal of Chemistry, 2013, 31, 987-991.	2.6	14
191	Crosslinking of polyimide atomic-layer-deposited on polyethersulfone membranes for synergistically enhanced performances. Journal of Membrane Science, 2015, 486, 161-168.	4.1	14
192	Reversible switch between the nanoporous and the nonporous state of amphiphilic block copolymer films regulated by selective swelling. Soft Matter, 2015, 11, 6927-6937.	1,2	14
193	Tight ultrafiltration membranes of mesoporous phenolic resin filled in macroporous substrates. Journal of Membrane Science, 2017, 533, 96-102.	4.1	14
194	Mesoporous phenolics filled in macroporous membranes for tunable tight-ultrafiltration. Chemical Engineering Science, 2018, 187, 98-106.	1.9	14
195	Visible-light degradation of azo dyes by imine-linked covalent organic frameworks. Green Energy and Environment, 2023, 8, 194-199.	4.7	14
196	Coupling Covalent Organic Frameworks and Carbon Nanotube Membranes to Design Easily Reusable Photocatalysts for Dye Degradation. Industrial & Engineering Chemistry Research, 2021, 60, 8687-8695.	1.8	14
197	Block copolymer coated carbon nanotube membrane anodes for enhanced and multipurpose hybrid capacitive deionization. Desalination, 2021, 520, 115368.	4.0	14
198	Insoluble Wilkinson Catalyst RhCl(TPPTS)3 Supported on SBA-15 for Heterogeneous Hydrogenation with and Without Supercritical CO2. Catalysis Letters, 2004, 98, 225-228.	1.4	13

#	Article	IF	CITATIONS
199	A simple and inexpensive route to synthesize porous silica microflowers by supercritical CO2. Microporous and Mesoporous Materials, 2005, 87, 10-14.	2.2	13
200	Fabrication, structural characterization and sensing properties of polydiacetylene nanofibers templated from anodized aluminum oxide. Sensors and Actuators B: Chemical, 2011, 155, 584-591.	4.0	13
201	The Hydroxylation of Aromatics with Oxygen by Vanadium Catalysts Supported on N-doped Carbon Materials. Catalysis Letters, 2015, 145, 1014-1021.	1.4	13
202	Fluorescent probe encapsulated hydrogel microsphere for selective and reversible detection of Hg 2+. Journal of Luminescence, 2017, 183, 212-216.	1.5	13
203	Semicrystalline Block Copolymers in Rigid Confining Nanopores. Macromolecules, 2017, 50, 8637-8646.	2.2	13
204	Selective swelling of polysulfone/poly(ethylene glycol) block copolymer towards fouling-resistant ultrafiltration membranes. Chinese Journal of Chemical Engineering, 2020, 28, 98-103.	1.7	13
205	Producing Nanoporosities in Block Copolymers within 30 s by Microwave-Boosted Selective Swelling. Macromolecules, 2020, 53, 3619-3626.	2.2	13
206	Spray coating of polysulfone/poly(ethylene glycol) block polymer on macroporous substrates followed by selective swelling for composite ultrafiltration membranes. Chinese Journal of Chemical Engineering, 2021, 29, 85-91.	1.7	13
207	Electrosynthesis of Ionic Covalent Organic Frameworks for Chargeâ€Selective Separation of Molecules. Small, 2022, 18, e2107108.	5.2	13
208	Designing sub-nanometer pores for efficient boron removal. Desalination, 2022, 533, 115755.	4.0	13
209	Hydrophilic ePTFE Membranes with Highly Enhanced Water Permeability and Improved Efficiency for Multipollutant Control. Industrial & Engineering Chemistry Research, 2016, 55, 2806-2812.	1.8	12
210	Highly permeable membranes enabled by film formation of block copolymers on water surface. Journal of Membrane Science, 2018, 568, 40-46.	4.1	12
211	Two-dimensional superstructures filled into polysulfone membranes for highly improved ultrafiltration: The case of cuprous iodide nanosheets. Journal of Membrane Science, 2019, 576, 142-149.	4.1	12
212	Ultrathin nanoporous membrane fabrication based on block copolymer micelles. Journal of Membrane Science, 2019, 570-571, 427-435.	4.1	12
213	Nanomeshes with Sub-10 nm Pores by Glycerol-Triggered 2D Assembly in Liquid Phases for Fast and Selective Membranes. Nano Letters, 2021, 21, 3302-3309.	4.5	12
214	Phenolic membranes with tunable sub-10-nm pores for nanofiltration and tight-ultrafiltration. Journal of Membrane Science, 2021, 640, 119858.	4.1	12
215	Synthesis of TiO2 nanotube networks from the mineralization of swim bladder membrane in supercritical CO2. Journal of Supercritical Fluids, 2007, 42, 310-315.	1.6	11
216	Energy-saving, responsive membranes with sharp selectivity assembled from micellar nanofibers of amphiphilic block copolymers. Journal of Materials Chemistry A, 2013, 1, 7100.	5.2	11

#	Article	IF	CITATIONS
217	Perpendicular Alignment and Selective Swelling-Induced Generation of Homopores of Polystyrene- <i>b</i> -poly(2-vinylpyridine)- <i>b</i> -poly(ethylene oxide) Triblock Terpolymer. Macromolecules, 2018, 51, 6248-6256.	2.2	11
218	Single-step coating of polyethylenimine on gradient nanoporous phenolics for tight membranes with ultrahigh permeance. Journal of Membrane Science, 2019, 587, 117172.	4.1	11
219	Endowing piezoelectric and anti-fouling properties by directly poling \hat{l}^2 -phase PVDF membranes with green diluents. AIP Advances, 2019, 9, .	0.6	11
220	Turn on fluorescent detection for Cd2+ based on surfactant controlled squaraine aggregation. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2019, 208, 236-242.	2.0	11
221	Upgrading polytetrafluoroethylene hollow-fiber membranes by CFD-optimized atomic layer deposition. Journal of Membrane Science, 2021, 617, 118610.	4.1	11
222	Highly permeable and robust membranes assembled from block-copolymer-functionalized carbon nanotubes. Journal of Membrane Science, 2015, 493, 224-231.	4.1	10
223	Immobilized palladium nanoparticles within polymers as active catalysts for Suzuki–Miyaura reaction. RSC Advances, 2016, 6, 16899-16903.	1.7	10
224	Gradient nanoporous phenolics filled in macroporous substrates for highly permeable ultrafiltration. Journal of Membrane Science, 2019, 576, 123-130.	4.1	10
225	Room-temperature swelling of block copolymers for nanoporous membranes with well-defined porosities. Journal of Membrane Science, 2020, 608, 118186.	4.1	10
226	Mechanism of permeance enhancement in mixed-matrix reverse osmosis membranes incorporated with graphene and its oxides. Separation and Purification Technology, 2021, 270, 118818.	3.9	10
227	Absolute and Fast Removal of Viruses and Bacteria from Water by Spraying-Assembled Carbon-Nanotube Membranes. Environmental Science & Environmental Sc	4.6	10
228	The Influence of Surface Topography and Surface Chemistry on the Anti-Adhesive Performance of Nanoporous Monoliths. ACS Applied Materials & Interfaces, 2016, 8, 22593-22604.	4.0	9
229	Synthesis of poly(2-dimethylaminoethyl methacrylate)-block- poly(styrene-alt-N-phenylmaleimide) and its thermo-tolerant nanoporous films prepared by selective swelling. Polymer, 2019, 164, 126-133.	1.8	9
230	Gradient nanoporous phenolics as substrates for high-flux nanofiltration membranes by layer-by-layer assembly of polyelectrolytes. Chinese Journal of Chemical Engineering, 2020, 28, 114-121.	1.7	9
231	CO2-responsive membranes prepared by selective swelling of block copolymers and their behaviors in protein ultrafiltration. Journal of Membrane Science, 2022, 641, 119928.	4.1	9
232	In situ Eu2O3 coating on the walls of mesoporous silica SBA-15 in supercritical ethane+ethanol mixture. Microporous and Mesoporous Materials, 2004, 75, 101-105.	2.2	8
233	Templated selfâ€assembly of block copolymers – Toward the rational design of plasmonic nanorods. Physica Status Solidi (B): Basic Research, 2010, 247, 2470-2475.	0.7	8
234	The synthesis of UDP-selective fluorescent probe and its imaging application in living cells. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 262-265.	1.0	8

#	Article	IF	CITATIONS
235	Enhanced performances of polypropylene membranes by molecular layer deposition of polyimide. Chinese Journal of Chemical Engineering, 2016, 24, 843-849.	1.7	8
236	Nanofriction of Graphene/Ionic Liquid-Infused Block Copolymer Homoporous Membranes. Langmuir, 2017, 33, 11590-11602.	1.6	8
237	A facile process to prepare fouling-resistant ultrafiltration membranes: Spray coating of water-containing block copolymer solutions on macroporous substrates. Separation and Purification Technology, $2021, 259, 118100$.	3.9	8
238	Surface functionalization of carbon nanotubes by direct encapsulation with varying dosages of amphiphilic block copolymers. Nanotechnology, 2015, 26, 325601.	1.3	7
239	High hydrophilicity and excellent adsorption ability of a stretched polypropylene/graphene oxide composite membrane achieved by plasma assisted surface modification. RSC Advances, 2015, 5, 71240-71252.	1.7	7
240	Selective swelling blends of block copolymers for nanoporous membranes with enhanced permeability and robustness. Journal of Polymer Science, Part B: Polymer Physics, 2017, 55, 1617-1625.	2.4	7
241	Nanocomposite block copolymer membranes with enhanced permeance and robustness by carbon nanotube doping. Composites Communications, 2022, 29, 101025.	3.3	7
242	Heterostructured two-dimensional covalent organic framework membranes for enhanced ion separation. Chemical Communications, 2022, 58, 7136-7139.	2.2	7
243	Responsive, fluorescent micellar nanospheres of amphiphilic block copolymers for the characterization of membrane pores. Journal of Membrane Science, 2013, 441, 9-17.	4.1	6
244	Carbonization of gradient phenolics filled in macroporous substrates for high-flux tight membranes: Toward ultrafiltration of polypeptides. Journal of Membrane Science, 2019, 590, 117309.	4.1	6
245	Synthesis of polypropylene/ZnS composite using the template prepared by supercritical CO2. Chemical Physics Letters, 2003, 381, 271-277.	1.2	5
246	Retarded evaporation-induced synthesis of lamellar block copolymer supramolecules for solvatochromic sensing. Sensors and Actuators B: Chemical, 2018, 277, 172-178.	4.0	5
247	High-Purity, High-Yield Synthesis of Covalent Organic Framework Nanosheets for Fast and Selective Molecular Separation. Chemistry of Materials, 2022, 34, 6345-6354.	3.2	5
248	Heat transfer of nanofluidics in hydrophilic pores: Insights from molecular dynamics simulations. Chinese Journal of Chemical Engineering, 2016, 24, 1117-1121.	1.7	4
249	Fast Evaporation Enabled Ultrathin Polymer Coatings on Nanoporous Substrates for Highly Permeable Membranes. Innovation(China), 2021, 2, 100088.	5.2	4
250	Polyamide membranes enabled by covalent organic framework nanofibers for efficient reverse osmosis. Journal of Polymer Science, 2022, 60, 2999-3008.	2.0	4
251	Selective Swelling of Block Copolymers for Porous Nanostructures. World Scientific Series in Nanoscience and Nanotechnology, 2019, , 45-117.	0.1	4
252	Morphology Engineering for Covalent Organic Frameworks (COFs) by Surfactant Mediation and Acid Adjustment. Chinese Journal of Polymer Science (English Edition), 2022, 40, 338-344.	2.0	4

#	Article	IF	CITATIONS
253	Solvent-Free Process to High-Flux Ultrafiltration Membranes: Spray Coating of Water-Dispersed Carbon Nanotubes. ACS ES&T Water, 2022, 2, 895-903.	2.3	4
254	Novel, positively charged membrane from a blending, crosslinking, and coagulation procedure. Journal of Applied Polymer Science, 2005, 96, 1847-1854.	1.3	3
255	Colorimetric Anion Sensing and Color Imaging Based on Catalyzed Deprotection in a New Azonaphthol Chromophore. Journal of Nanoscience and Nanotechnology, 2006, 6, 3551-3554.	0.9	3
256	Surface Attachment of Gold Nanoparticles Guided by Block Copolymer Micellar Films and Its Application in Silicon Etching. Materials, 2015, 8, 3793-3805.	1.3	3
257	Polymeric nanospheres with tunable sizes, water dispersibility, and thermostability from heatingâ€enabled micellization of polysulfoneâ€∢i>blockâ€polyethylene glycol. Journal of Polymer Science, Part B: Polymer Physics, 2018, 56, 769-777.	2.4	3
258	Synthesis of Tubular Graphite Cones through a Catalytically Thermal Reduction Route. Journal of Physical Chemistry B, 2004, 108, 9811-9814.	1.2	2
259	Synthesis of Twoâ€Dimensional Carbon and Carbon–Metal Nanocomposites Using a Natural Cellular Material as the Carbon Precursor. European Journal of Inorganic Chemistry, 2010, 2010, 4367-4373.	1.0	2
260	Preparation of polysulfone-based block copolymer ultrafiltration membranes by selective swelling and sacrificing nanofillers. Frontiers of Chemical Science and Engineering, 2022, 16, 745-754.	2.3	2
261	Virtual Special Issue: Polymeric Membranes for Advanced Separations. Macromolecules, 2021, 54, 7675-7677.	2.2	1
262	膜与膜å应噓: çŽ°çŠ¶ã€æŒ'æ~与机é≰. Scientia Sinica Chimica, 2014, 44, 1469-1480.	0.2	1
263	Selective Swelling of Stretched Block Copolymer Hollow Fibers for Upgraded Membrane Performance. ACS Applied Polymer Materials, 2022, 4, 7989-7997.	2.0	1
264	Structure and dynamics of water in TiO2 nano slits: The influence of interfacial interactions and pore sizes. Chinese Journal of Chemical Engineering, 2021, 31, 67-74.	1.7	0
265	Interference mechanism of cations on transport of lithium and magnesium inside COF nanofiltration membranes. Molecular Simulation, 2022, 48, 1369-1377.	0.9	O