Margarita Hernanz

List of Publications by Citations

Source: https://exaly.com/author-pdf/6535749/margarita-hernanz-publications-by-citations.pdf

Version: 2024-04-23

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

172 4,979 41 65 g-index

203 5,502 5.1 5 ext. papers ext. citations avg, IF L-index

#	Paper	IF	Citations
172	Nucleosynthesis in Classical Novae: CO versus ONe White Dwarfs. <i>Astrophysical Journal</i> , 1998 , 494, 680-	-6 р,р	333
171	Gamma-ray bursts as collimated jets from neutron star/black hole mergers. <i>Nature</i> , 1993 , 361, 236-238	50.4	163
170	Presolar Grains from Novae. <i>Astrophysical Journal</i> , 2001 , 551, 1065-1072	4.7	158
169	The Large Observatory for X-ray Timing (LOFT). Experimental Astronomy, 2012, 34, 415-444	1.3	148
168	The Cooling of CO White Dwarfs: Influence of the Internal Chemical Distribution. <i>Astrophysical Journal</i> , 1997 , 486, 413-419	4.7	139
167	Nuclear Uncertainties in the NeNa-MgAl Cycles and Production of documentclass{aastex} usepackage{amsbsy} usepackage{amsfonts} usepackage{amssymb} usepackage{bm} usepackage{mathrsfs} usepackage{pifont} usepackage{stmaryrd} usepackage{textcomp} usepackage{portland,xspace} usepackage{amsmath,amsxtra} usepackage[OT2,OT1]{fontenc}	4.7	137
166	The Imprint of Nova Nucleosynthesis in Presolar Grains. Astrophysical Journal, 2004 , 612, 414-428 Astrophysical Journal, 1999 , 520, 347-360	4.7	136
165	Cooling theory of crystallized white dwarfs. <i>Astrophysical Journal</i> , 1994 , 434, 641	4.7	123
164	The e-ASTROGAM mission. <i>Experimental Astronomy</i> , 2017 , 44, 25-82	1.3	114
163	The Ages of Very Cool Hydrogen-rich White Dwarfs. <i>Astrophysical Journal</i> , 2000 , 544, 1036-1043	4.7	107
162	Science with e-ASTROGAM: A space mission for MeVGeV gamma-ray astrophysics. <i>Journal of High Energy Astrophysics</i> , 2018 , 19, 1-106	2.5	101
161	The enhanced X-ray Timing and Polarimetry mission BXTP. <i>Science China: Physics, Mechanics and Astronomy</i> , 2019 , 62, 1	3.6	95
160	Bright radio emission from an ultraluminous stellar-mass microquasar in M 31. <i>Nature</i> , 2013 , 493, 187-9	0 50.4	93
159	21Na(p,gamma)22Mg reaction and oxygen-neon novae. <i>Physical Review Letters</i> , 2003 , 90, 162501	7.4	92
158	Axion cooling of white dwarfs. <i>Astrophysical Journal</i> , 1992 , 392, L23	4.7	92
157	The THESEUS space mission concept: science case, design and expected performances. <i>Advances in Space Research</i> , 2018 , 62, 191-244	2.4	90
156	Nucleosynthesis in classical novae. <i>Nuclear Physics A</i> , 2006 , 777, 550-578	1.3	88

(2003-1998)

155	Gamma-ray emission from individual classical novae. <i>Monthly Notices of the Royal Astronomical Society</i> , 1998 , 296, 913-920	4.3	81
154	A Chandra Low Energy Transmission Grating Spectrometer Observation of V4743 Sagittarii: A Supersoft X-Ray Source and a Violently Variable Light Curve. <i>Astrophysical Journal</i> , 2003 , 594, L127-L13	o ^{4.7}	75
153	Nucleosynthesis in classical nova explosions. <i>Journal of Physics G: Nuclear and Particle Physics</i> , 2007 , 34, R431-R458	2.9	74
152	On the Synthesis of [TSUP]7[/TSUP]Li and [TSUP]7[/TSUP]Be in Novae. <i>Astrophysical Journal</i> , 1996 , 465, L27-L30	4.7	73
151	eXTP: Enhanced X-ray Timing and Polarization mission 2016 ,		73
150	Gamma-Ray Emission from Novae Related to Positron Annihilation: Constraints on its Observability Posed by New Experimental Nuclear Data. <i>Astrophysical Journal</i> , 1999 , 526, L97-L100	4.7	72
149	Synthesis of Intermediate-Mass Elements in Classical Novae: From Si to Ca. <i>Astrophysical Journal</i> , 2001 , 560, 897-906	4.7	71
148	The Extraordinary X-ray Light Curve of the Classical Nova V1494 Aquilae (1999 No. 2) in Outburst: The Discovery of Pulsations and a B urst [] Astrophysical Journal, 2003 , 584, 448-452	4.7	66
147	The influence of crystallization on the luminosity function of white dwarfs. <i>Astrophysical Journal</i> , 1994 , 434, 652	4.7	65
146	Properties of high-density binary mixtures and the age of the Universe from white dwarf stars. <i>Nature</i> , 1988 , 333, 642-644	50.4	57
145	The rate of change of the gravitational constant and the cooling of white dwarfs. <i>Monthly Notices of the Royal Astronomical Society</i> , 1995 , 277, 801-810	4.3	56
144	The Physics of Crystallizing White Dwarfs. Astrophysical Journal, 1997, 485, 308-312	4.7	56
143	New Results on [TSUP]26[/TSUP]A[CLC]l[/CLC] Production in Classical Novae. <i>Astrophysical Journal</i> , 1997 , 479, L55-L58	4.7	54
142	X-ray monitoring of classical novae in the central region of M 31 III. Autumn and winter 2009/10, 2010/11, and 2011/12. <i>Astronomy and Astrophysics</i> , 2014 , 563, A2	5.1	52
141	Models for the soft X-ray emission of post-outburst classical novae. <i>Astronomy and Astrophysics</i> , 2005 , 439, 1061-1073	5.1	51
140	The Energetics of Crystallizing White Dwarfs Revisited Again. <i>Astrophysical Journal</i> , 2000 , 528, 397-400	4.7	48
139	Experimental determination of the O17(p, PN14 and O17(p, PT18 reaction rates. <i>Physical Review C</i> , 2007 , 75,	2.7	46
138	The frequency of occurrence of novae hosting an ONe white dwarf. <i>Astronomy and Astrophysics</i> , 2003 , 407, 1021-1028	5.1	46

137	A classical nova, V2487 Oph 1998, seen in x-rays before and after its explosion. <i>Science</i> , 2002 , 298, 393-	533.3	46
136	The Halo White Dwarf Population. <i>Astrophysical Journal</i> , 1998 , 503, 239-246	4.7	46
135	Evidence for Nonlinear Diffusive Shock Acceleration of Cosmic Rays in the 2006 Outburst of the Recurrent Nova RS Ophiuchi. <i>Astrophysical Journal</i> , 2007 , 663, L101-L104	4.7	44
134	He-detonation in sub-Chandrasekhar CO white dwarfs: A new insight into energetics and \$mathsf{{vec p}}\$-process nucleosynthesis. <i>Astronomy and Astrophysics</i> , 2002 , 383, L27-L30	5.1	44
133	XMM-NEWTONX-RAY AND ULTRAVIOLET OBSERVATIONS OF THE FAST NOVA V2491 Cyg DURING THE SUPERSOFT SOURCE PHASE. <i>Astrophysical Journal</i> , 2011 , 733, 70	4.7	42
132	Obscuration effects in super-soft-source X-ray spectra. <i>Astronomy and Astrophysics</i> , 2013 , 559, A50	5.1	41
131	Collapse and explosion of white dwarfs. I - Precollapse evolution. <i>Astrophysical Journal</i> , 1983 , 273, 320	4.7	41
130	X-ray monitoring of classical novae in the central region of MB1. <i>Astronomy and Astrophysics</i> , 2011 , 533, A52	5.1	40
129	The origin of presolar nova grains. <i>Meteoritics and Planetary Science</i> , 2007 , 42, 1135-1143	2.8	39
128	Astrophysical rate of 15O(即19Ne via the (p,t) reaction in inverse kinematics. <i>Physical Review C</i> , 2003 , 67,	2.7	39
127	M31N 2008-12al HE REMARKABLE RECURRENT NOVA IN M31: PANCHROMATIC OBSERVATIONS OF THE 2015 ERUPTION. <i>Astrophysical Journal</i> , 2016 , 833, 149	4.7	38
126	The final stages of evolution of cold, mass-accreting white dwarfs. <i>Astrophysical Journal</i> , 1988 , 324, 331	4.7	37
125	X-ray monitoring of classical novae in the central region of MB1. <i>Astronomy and Astrophysics</i> , 2010 , 523, A89	5.1	36
124	FROM X-RAY DIPS TO ECLIPSE: WITNESSING DISK REFORMATION IN THE RECURRENT NOVA U Sco. <i>Astrophysical Journal</i> , 2012 , 745, 43	4.7	34
123	A remarkable recurrent nova in M31: Discovery and optical/UV observations of the predicted 2014 eruption. <i>Astronomy and Astrophysics</i> , 2015 , 580, A45	5.1	33
122	Swiftdetection of the super-swift switch-on of the super-soft phase in nova V745 Sco (2014). <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 454, 3108-3120	4.3	32
121	Evolutionary calculations of carbon dredge-up in helium envelope white dwarfs. <i>Monthly Notices of the Royal Astronomical Society</i> , 1998 , 296, 523-530	4.3	32
120	Observatory science with eXTP. Science China: Physics, Mechanics and Astronomy, 2019, 62, 1	3.6	31

(2018-2015)

119	A remarkable recurrent nova in M 31: The predicted 2014 outburst in X-rays withSwift. <i>Astronomy and Astrophysics</i> , 2015 , 580, A46	5.1	29	
118	The prompt gamma-ray emission of novae. <i>New Astronomy Reviews</i> , 2002 , 46, 559-563	7.9	28	
117	Gamma-ray emission from SN2014J near maximum optical light. <i>Astronomy and Astrophysics</i> , 2016 , 588, A67	5.1	28	
116	Erays from classical novae: expectations from present and future missions. <i>New Astronomy Reviews</i> , 2004 , 48, 35-39	7.9	26	
115	Hydrogen burning of 17O in classical novae. <i>Physical Review Letters</i> , 2005 , 95, 031101	7.4	26	
114	A Trojan Horse Approach to the Production of 18F in Novae. Astrophysical Journal, 2017, 846, 65	4.7	25	
113	GRI: focusing on the evolving violent universe. Experimental Astronomy, 2009, 23, 121-138	1.3	25	
112	CLAIRE: First light for a gamma-ray lens. Experimental Astronomy, 2006, 20, 253-267	1.3	25	
111	The first two transient supersoft X-ray sources in MB1 globular clusters and the connection to classical novae. <i>Astronomy and Astrophysics</i> , 2009 , 500, 769-779	5.1	22	
110	CLAIREE first light. New Astronomy Reviews, 2004, 48, 243-249	7.9	22	
109	LOFT: the Large Observatory For X-ray Timing 2012 ,		21	
108	CXOM31D004253.1+411422: the first ultraluminous X-ray transient in MB1. <i>Astronomy and Astrophysics</i> , 2012 , 538, A49	5.1	21	
107	The e-ASTROGAM gamma-ray space mission 2016 ,		21	
106	The First Nova Explosions. Astrophysical Journal, 2007, 662, L103-L106	4.7	20	
105	MAX: a gamma-ray lens for nuclear astrophysics 2004 ,		19	
104	Proton-decaying states in Mg22 and the nucleosynthesis of Na22 in novae. <i>Physical Review C</i> , 2003 , 68,	2.7	18	
103	Pre-nova X-ray observations of V2491 Cygni (Nova Cyg 2008b). <i>Astronomy and Astrophysics</i> , 2009 , 497, L5-L8	5.1	18	
102	Breaking the Habit: The Peculiar 2016 Eruption of the Unique Recurrent Nova M31N 2008-12a. <i>Astrophysical Journal</i> , 2018 , 857, 68	4.7	17	

101	X-RAY FLASHES IN RECURRENT NOVAE: M31N 2008-12a AND THE IMPLICATIONS OF THESWIFTNONDETECTION. <i>Astrophysical Journal</i> , 2016 , 830, 40	4.7	17
100	Observation of SN2011fe with INTEGRAL. Astronomy and Astrophysics, 2013, 552, A97	5.1	17
99	V5116 Sagittarii, an Eclipsing Supersoft Postoutburst Nova?. <i>Astrophysical Journal</i> , 2008 , 675, L93-L96	4.7	16
98	The recurrent nova RS Oph: A possible scenario for type Ia supernovae. <i>New Astronomy Reviews</i> , 2008 , 52, 386-389	7.9	16
97	CLAIRE gamma-ray lens: flight and long-distance test results 2004,		16
96	Multiband study of RXD08380827 and XMM J083850.4082759: a new asynchronous magnetic cataclysmic variable and a candidate transitional millisecond pulsar. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 471, 2902-2916	4.3	15
95	XMM-NewtonObservations of Nova Sagittarii 1998. Astrophysical Journal, 2007, 664, 467-473	4.7	15
94	Radioactivities from novae. <i>New Astronomy Reviews</i> , 2006 , 50, 504-508	7.9	15
93	MAX, a Laue diffraction lens for nuclear astrophysics. Experimental Astronomy, 2006, 20, 269-278	1.3	15
92	The Impact of the Chemical Stratification of White Dwarfs on the Classification of Classical Novae. <i>Astrophysical Journal</i> , 2003 , 597, L41-L44	4.7	15
91	A DUAL mission for nuclear astrophysics. <i>Experimental Astronomy</i> , 2012 , 34, 583-622	1.3	14
90	Nova M31N 2007-12b: supersoft X-rays reveal an intermediate polar?. <i>Astronomy and Astrophysics</i> , 2011 , 531, A22	5.1	14
89	Envelope models for the supersoft X-ray emission of V1974 Cyg. <i>Astronomy and Astrophysics</i> , 2005 , 439, 1057-1060	5.1	14
88	Search for 7Be in the outbursts of four recent novae. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 492, 4975-4985	4.3	13
87	Gamma-rays from classical novae252-284		13
86	Gamma-ray observations of Nova Sgr 2015 No. 2 with INTEGRAL. <i>Astronomy and Astrophysics</i> , 2018 , 615, A107	5.1	12
85	Background for a gamma-ray satellite on a low-Earth orbit. <i>Experimental Astronomy</i> , 2019 , 47, 273-302	1.3	12
84	A simple method to compute white dwarf luminosity functions. <i>Astronomy and Astrophysics</i> , 1996 , 117. 13-18		12

(2010-2016)

83	COLLIMATION AND ASYMMETRY OF THE HOT BLAST WAVE FROM THE RECURRENT NOVA V745 Sco. <i>Astrophysical Journal</i> , 2016 , 825, 95	4.7	12	
82	STROBE-X: X-ray timing and spectroscopy on dynamical timescales from microseconds to years. <i>Results in Physics</i> , 2017 , 7, 3704-3705	3.7	11	
81	Detectability of gamma-ray emission from classical novae with Swift/BAT. <i>Astronomy and Astrophysics</i> , 2008 , 485, 223-231	5.1	11	
80	Binary Systems and Their Nuclear Explosions. <i>Lecture Notes in Physics</i> , 2011 , 233-305	0.8	11	
79	Galactic 1.275-MeV emission from ONe novae and its detectability by INTEGRAL/SPI. <i>Monthly Notices of the Royal Astronomical Society</i> , 2000 , 319, 350-364	4.3	10	
78	STROBE-X: a probe-class mission for x-ray spectroscopy and timing on timescales from microseconds to years 2018 ,		10	
77	What We Learn from the X-Ray Grating Spectra of Nova SMC 2016. Astrophysical Journal, 2018 , 862, 164	4 4.7	10	
76	The Large Observatory for x-ray timing 2014 ,		9	
75	X-ray observations of classical novae: Theoretical implications. <i>Astronomische Nachrichten</i> , 2010 , 331, 169-174	0.7	9	
74	The physics of white dwarfs. <i>Journal of Physics Condensed Matter</i> , 1998 , 10, 11263-11272	1.8	9	
73	The very short supersoft X-ray state of the classical nova M31N\(\mathbb{2}\)007-11a. Astronomy and Astrophysics, 2009 , 498, L13-L16	5.1	9	
72	GRI: focusing on the evolving violent universe 2007,		8	
71	The LOFT mission concept: a status update 2016 ,		7	
70	Constraining Models of Classical Nova Outbursts with the Murchison Meteorite. <i>Publications of the Astronomical Society of Australia</i> , 2003 , 20, 351-355	5.5	7	
69	The stellar formation rate and the white dwarf luminosity function 1995 , 19-23		7	
68	Astrophysics: A lithium-rich stellar explosion. <i>Nature</i> , 2015 , 518, 307-8	50.4	6	
67	The LOFT wide field monitor 2012 ,		6	
66	V5116 Sgr: A disc-ecipsed SSS post-outburst nova?. <i>Astronomische Nachrichten</i> , 2010 , 331, 201-204	0.7	6	

65	Early multiwavelength analysis of the recurrent nova V745 Sco. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 490, 3691-3704	4.3	5
64	Nucleosynthesis in novae. Implications on lithium production and gamma-ray radionuclides. <i>Nuclear Physics A</i> , 1997 , 621, 491-494	1.3	5
63	CdZnTe detector for hard x-ray and gamma-ray focusing telescope 2008 ,		5
62	The Advanced Compton Telescope 2006 ,		5
61	XIPE: the x-ray imaging polarimetry explorer 2016 ,		5
60	INTEGRAL reloaded: Spacecraft, instruments and ground system. New Astronomy Reviews, 2021, 93, 10	1 <i>629</i>	5
59	The supersoft X-ray source in V5116 Sagittarii. Astronomy and Astrophysics, 2017, 601, A93	5.1	4
58	Large Observatory for x-ray Timing (LOFT-P): a Probe-class mission concept study 2016 ,		4
57	Beacons in the sky: Classical novae vs. X-ray bursts. European Physical Journal A, 2006, 27, 107-115	2.5	4
56	Nucleosynthesis in nova explosions: Prospects for its observation with focusing telescopes. <i>Experimental Astronomy</i> , 2006 , 20, 57-64	1.3	4
55	BATSE observations of classical novae. AIP Conference Proceedings, 2000,	Ο	4
54	A remarkable recurrent nova in M31: Discovery and optical/UV observations of the predicted 2014 eruption(Corrigendum). <i>Astronomy and Astrophysics</i> , 2016 , 593, C3	5.1	4
53	Classical and Recurrent Nova Models. <i>Proceedings of the International Astronomical Union</i> , 2011 , 7, 80-8	7 0.1	3
52	Imaging detector development for nuclear astrophysics using pixelated CdTe. <i>Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment</i> , 2010 , 623, 434-436	1.2	3
51	The Compton Cube. <i>Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment</i> , 2003 , 504, 38-43	1.2	3
50	P-process nucleosynthesis during He-detonation in sub-Chandrasekhar CO white dwarfs. <i>Nuclear Physics A</i> , 2003 , 718, 596-598	1.3	3
49	Gamma-rays from classical nova explosions: theory and observations. <i>Nuclear Physics A</i> , 2005 , 758, 721-	724	3
48	Presolar grains from novae. <i>Nuclear Physics A</i> , 2001 , 688, 430-432	1.3	3

(2012-2017)

47	Pixel CdTe semiconductor module to implement a sub-MeV imaging detector for astrophysics. Journal of Instrumentation, 2017 , 12, C03048-C03048	1	2
46	V2487 Oph 1998: a post nova in an intermediate polar. EPJ Web of Conferences, 2014, 64, 07002	0.3	2
45	Simulations of the x-ray imaging capabilities of the silicon drift detectors (SDD) for the LOFT wide-field monitor 2012 ,		2
44	Research and development of a gamma-ray imaging spectrometer in the MeV range in Barcelona 2010 ,		2
43	Recent discoveries of supersoft X-ray sources in M 31. Astronomische Nachrichten, 2010 , 331, 193-196	0.7	2
42	10 Gyr of classical nova explosions. <i>Journal of Physics G: Nuclear and Particle Physics</i> , 2008 , 35, 014024	2.9	2
41	The impact of the chemical stratification of white dwarfs on the nucleosynthesis from classical novae. <i>Nuclear Physics A</i> , 2003 , 718, 255-258	1.3	2
40	Classical novae: sources of CNO-nuclei and gamma-ray emitters. <i>Nuclear Physics A</i> , 2001 , 688, 118-121	1.3	2
39	Nucleosynthesis in accreting neutron stars. <i>Nuclear Physics A</i> , 2001 , 688, 447-449	1.3	2
38	Update of nuclear reaction rates affecting nucleosynthesis in novae. <i>Nuclear Physics A</i> , 2001 , 688, 450-4	15123	2
37	Accretion-induced collapse of old white dwarfs. Astrophysics and Space Science, 1987, 131, 665-669	1.6	2
36	The wide field monitor onboard the eXTP mission 2018,		2
35	M31NI2008-05d: a M 31 disk nova with a dipping supersoft X-ray light curve. <i>Astronomy and Astrophysics</i> , 2012 , 544, A44	5.1	2
34	The DD Population in the Solar Neighborhood 1997 , 127-146		2
33	Synthesis of radioactive elements in novae and supernovae and their use as a diagnostic tool. <i>New Astronomy Reviews</i> , 2021 , 92, 101606	7.9	2
32	The design of the wide field monitor for the LOFT mission 2014 ,		1
31	Development and performance of a gamma-ray imaging detector 2012 ,		1
30	High Energy Emission of Symbiotic Recurrent Novae: RS Oph and V407 Cyg. <i>Open Astronomy</i> , 2012 , 21,	0.9	1

29	The e-ASTROGAM gamma-ray space observatory for the multimessenger astronomy of the 2030s 2018 ,		1
28	7Be in the outburst of the ONe nova V6595 Sgr. <i>Monthly Notices of the Royal Astronomical Society</i> , 2021 , 509, 3258-3267	4.3	1
27	Nova LMC 2009a as observed with XMMNewton, compared with other novae. <i>Monthly Notices of the Royal Astronomical Society</i> , 2021 , 505, 3113-3134	4.3	1
26	Hard-X and gamma-ray imaging detector for astrophysics based on pixelated CdTe semiconductors. <i>Journal of Instrumentation</i> , 2016 , 11, C01011-C01011	1	O
25	Detection of 7Be ii in the Small Magellanic Cloud. <i>Monthly Notices of the Royal Astronomical Society</i> , 2022 , 510, 5302-5314	4.3	0
24	Future gamma-ray missions[polarimetric prospects. Experimental Astronomy, 2019, 48, 65-76	1.3	
23	Observing GRBs with theLOFTWide Field Monitor. <i>EAS Publications Series</i> , 2013 , 61, 617-623	0.2	
22	Classical Novae as Supersoft X-ray Sources in the Andromeda Galaxy. <i>Proceedings of the International Astronomical Union</i> , 2011 , 7, 105-112	0.1	
21	Gamma-Ray Lenses for Astrophysics and the Gamma-Ray Imager Mission GRI. <i>IEEE Transactions on Nuclear Science</i> , 2009 , 56, 1242-1249	1.7	
20	Astrophysical consequences of the screening of nuclear reactions. <i>International Astronomical Union Colloquium</i> , 1994 , 147, 106-125		
19	Precollapse evolution of accreting CO white dwarfs. Astrophysics and Space Science, 1990 , 169, 171-175	1.6	
18	The luminosity function of halo white dwarfs. Astrophysics and Space Science, 1990, 169, 199-202	1.6	
17	Accretion on CO White Dwarfs. Influence of the External Burning Shells on the Evolution. <i>International Astronomical Union Colloquium</i> , 1990 , 122, 388-389		
16	Accretion-Induced Collapse of Old White Dwarfs. <i>International Astronomical Union Colloquium</i> , 1987 , 93, 665-669		
15	Cold C + O white dwarfs and neutron stars. Advances in Space Research, 1988, 8, 703-706	2.4	
14	Gravitational Collapse of Mass-Accreting White Dwarfs. <i>International Astronomical Union Colloquium</i> , 1989 , 114, 88-91		
13	Beacons in the sky: Classical novae vs. X-ray bursts 2006 , 107-115		
12	Gravitational collapse of mass-accreting white dwarfs 1989 , 88-91		

LIST OF PUBLICATIONS

11	Accretion on CO white dwarfs. influence of the external burning shells on the evolution 1990 , 388-389	
10	The luminosity function of dim white dwarfs 1995 , 36-40	
9	The role of G in the cooling of white dwarfs 1995 , 73-77	
8	White Dwarfs as Tracers of Galactic Evolution 2001 , 273-276	
7	X-Ray Emission from Classical Novae 2003 , 337-340	
6	Nucleosynthesis in nova explosions: Prospects for its observation with focusing telescopes 2006 , 57-6	4
5	Accretion-Induced Collapse of Old White Dwarfs 1987, 665-669	
4	The Gamma-Ray Spectrum of Classical Novae. <i>Astrophysics and Space Science Library</i> , 1996 , 303-304	0.3
3	The Redistribution of Carbon and Oxygen in Crystallizing White Dwarfs. <i>Astrophysics and Space Science Library</i> , 1997 , 19-25	0.3
2	Application of the THM to the investigation of reactions induced by unstable nuclei: the 18F(p,∰15O case. <i>EPJ Web of Conferences</i> , 2019 , 223, 01030	0.3
1	Binary Systems and Their Nuclear Explosions. Astrophysics and Space Science Library, 2018, 287-375	0.3