
Gregory V Hartland

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6535222/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Journal of Physical Chemistry: Looking Back on Our 125th Anniversary and Looking Ahead to 2022. Journal of Physical Chemistry C, 2022, 126, 1-2.	1.5	0
2	A Venue for Advances in Experimental and Theoretical Methods in Physical Chemistry. Journal of Physical Chemistry A, 2022, 126, 177-179.	1.1	0
3	The Journal of Physical Chemistry: Looking Back on Our 125th Anniversary and Looking Ahead to 2022. Journal of Physical Chemistry A, 2022, 126, 1-2.	1.1	Ο
4	The Journal of Physical Chemistry: Looking Back on Our 125th Anniversary and Looking Ahead to 2022. Journal of Physical Chemistry B, 2022, 126, 1-2.	1.2	0
5	Energy Dissipation for Nanometer Sized Acoustic Oscillators. Journal of Physical Chemistry C, 2022, 126, 3811-3819.	1.5	7
6	Influence of Thermal Diffusion on the Spatial Resolution in Photothermal Microscopy. Journal of Physical Chemistry C, 2022, 126, 3560-3568.	1.5	8
7	Photoinduced Transformation of Cs ₂ Au ₂ Br ₆ into CsPbBr ₃ Nanocrystals. Journal of Physical Chemistry Letters, 2022, 13, 2921-2927.	2.1	4
8	Influence of thermal diffusion on the spatial resolution of photothermal microscopy. , 2022, , .		0
9	50 and 100 Years Ago in <i>The Journal of Physical Chemistry</i> . Journal of Physical Chemistry C, 2022, 126, 6093-6095.	1.5	Ο
10	50 and 100 Years Ago in <i>The Journal of Physical Chemistry</i> . Journal of Physical Chemistry B, 2022, 126, 2609-2611.	1.2	0
11	50 and 100 Years Ago in <i>The Journal of Physical Chemistry</i> . Journal of Physical Chemistry A, 2022, 126, 2149-2151.	1.1	Ο
12	Tribute to Marie-Paule Pileni. Journal of Physical Chemistry C, 2022, 126, 7357-7358.	1.5	0
13	Confronting Racism in Chemistry Journals. ACS ES&T Engineering, 2021, 1, 3-5.	3.7	Ο
14	Confronting Racism in Chemistry Journals. ACS ES&T Water, 2021, 1, 3-5.	2.3	0
15	Celebrating the 125th Anniversary of The Journal of Physical Chemistry. Journal of Physical Chemistry A, 2021, 125, 1-2.	1.1	0
16	Evolving Sections of The Journal of Physical Chemistry to Reflect an Ever-Changing Field. Journal of Physical Chemistry A, 2021, 125, 2019-2020.	1.1	0
17	Evolving Sections of The Journal of Physical Chemistry to Reflect an Ever-Changing Field. Journal of Physical Chemistry B, 2021, 125, 2465-2466.	1.2	3
18	Evolving Sections of The Journal of Physical Chemistry to Reflect an Ever-Changing Field. Journal of Physical Chemistry C, 2021, 125, 5425-5426.	1.5	0

#	Article	IF	CITATIONS
19	Virtual Issue on Chiral Plasmonics. Journal of Physical Chemistry C, 2021, 125, 10175-10178.	1.5	11
20	Suggesting Reviewers to Improve Your Manuscript. Journal of Physical Chemistry A, 2021, 125, 5861-5862.	1.1	0
21	Suggesting Reviewers to Improve Your Manuscript. Journal of Physical Chemistry B, 2021, 125, 7333-7334.	1.2	0
22	Suggesting Reviewers to Improve Your Manuscript. Journal of Physical Chemistry C, 2021, 125, 14493-14494.	1.5	1
23	The Art of Reviewing Manuscripts. Journal of Physical Chemistry A, 2021, 125, 6512-6513.	1.1	0
24	The Art of Reviewing Manuscripts. Journal of Physical Chemistry B, 2021, 125, 8268-8269.	1.2	0
25	The Art of Reviewing Manuscripts. Journal of Physical Chemistry C, 2021, 125, 16369-16370.	1.5	Ο
26	Light Induced Processes in CsPbBr ₃ –Au Hybrid Nanocrystals: Electron Transfer and Expulsion of Au. Journal of Physical Chemistry C, 2021, 125, 17881-17889.	1.5	17
27	Revising Manuscripts: Trying to Make Everyone Happy. Journal of Physical Chemistry B, 2021, 125, 9387-9388.	1.2	Ο
28	Revising Manuscripts: Trying to Make Everyone Happy. Journal of Physical Chemistry C, 2021, 125, 18087-18088.	1.5	1
29	Revising Manuscripts: Trying to Make Everyone Happy. Journal of Physical Chemistry A, 2021, 125, 7123-7124.	1.1	Ο
30	Celebrating the 125th Anniversary of The Journal of Physical Chemistry. Journal of Physical Chemistry B, 2021, 125, 1-2.	1.2	0
31	Nanoparticle–Fluid Interactions at Ultrahigh Acoustic Vibration Frequencies Studied by Femtosecond Time-Resolved Microscopy. ACS Nano, 2021, 15, 1833-1840.	7.3	19
32	Celebrating the 125th Anniversary of The Journal of Physical Chemistry. Journal of Physical Chemistry C, 2021, 125, 1-2.	1.5	1
33	Virtual Issue on Ultrafast Charge Separation in Energy Research. Journal of Physical Chemistry C, 2021, 125, 21317-21320.	1.5	1
34	Polymer dependent acoustic mode coupling and Hooke's law spring constants in stacked gold nanoplates. Journal of Chemical Physics, 2021, 155, 144701.	1.2	4
35	Confronting Racism in Chemistry Journals. ACS Pharmacology and Translational Science, 2020, 3, 559-561.	2.5	0
36	Confronting Racism in Chemistry Journals. Biochemistry, 2020, 59, 2313-2315.	1.2	0

#	Article	IF	CITATIONS
37	Confronting Racism in Chemistry Journals. Langmuir, 2020, 36, 7155-7157.	1.6	Ο
38	Editorial Confronting Racism in Chemistry Journals. , 2020, 2, 829-831.		0
39	Virtual Issue on Polaritons in Physical Chemistry. Journal of Physical Chemistry C, 2020, 124, 19875-19879.	1.5	0
40	Confronting Racism in Chemistry Journals. Journal of Physical Chemistry Letters, 2020, 11, 5279-5281.	2.1	1
41	Confronting Racism in Chemistry Journals. ACS Applied Energy Materials, 2020, 3, 6016-6018.	2.5	0
42	Confronting Racism in Chemistry Journals. ACS Central Science, 2020, 6, 1012-1014.	5.3	1
43	Confronting Racism in Chemistry Journals. Industrial & Engineering Chemistry Research, 2020, 59, 11915-11917.	1.8	0
44	Confronting Racism in Chemistry Journals. Journal of Natural Products, 2020, 83, 2057-2059.	1.5	0
45	Confronting Racism in Chemistry Journals. ACS Medicinal Chemistry Letters, 2020, 11, 1354-1356.	1.3	Ο
46	Confronting Racism in Chemistry Journals. Journal of the American Society for Mass Spectrometry, 2020, 31, 1321-1323.	1.2	1
47	Confronting Racism in Chemistry Journals. Energy & Fuels, 2020, 34, 7771-7773.	2.5	Ο
48	Confronting Racism in Chemistry Journals. ACS Sensors, 2020, 5, 1858-1860.	4.0	0
49	Confronting Racism in Chemistry Journals. ACS Nano, 2020, 14, 7675-7677.	7.3	2
50	Challenges and Opportunities in Designing Perovskite Nanocrystal Heterostructures. ACS Energy Letters, 2020, 5, 2253-2255.	8.8	39
51	Confronting Racism in Chemistry Journals. Journal of Chemical Theory and Computation, 2020, 16, 4003-4005.	2.3	0
52	Confronting Racism in Chemistry Journals. Journal of Organic Chemistry, 2020, 85, 8297-8299.	1.7	0
53	Confronting Racism in Chemistry Journals. Analytical Chemistry, 2020, 92, 8625-8627.	3.2	0
54	Confronting Racism in Chemistry Journals. Journal of Chemical Education, 2020, 97, 1695-1697.	1.1	0

#	Article	IF	CITATIONS
55	Confronting Racism in Chemistry Journals. Organic Process Research and Development, 2020, 24, 1215-1217.	1.3	Ο
56	Confronting Racism in Chemistry Journals. ACS Sustainable Chemistry and Engineering, 2020, 8, .	3.2	0
57	Confronting Racism in Chemistry Journals. Chemistry of Materials, 2020, 32, 5369-5371.	3.2	Ο
58	Confronting Racism in Chemistry Journals. Chemical Research in Toxicology, 2020, 33, 1511-1513.	1.7	0
59	Confronting Racism in Chemistry Journals. Inorganic Chemistry, 2020, 59, 8639-8641.	1.9	Ο
60	Confronting Racism in Chemistry Journals. ACS Applied Nano Materials, 2020, 3, 6131-6133.	2.4	0
61	Confronting Racism in Chemistry Journals. ACS Applied Polymer Materials, 2020, 2, 2496-2498.	2.0	0
62	Confronting Racism in Chemistry Journals. ACS Chemical Biology, 2020, 15, 1719-1721.	1.6	0
63	Confronting Racism in Chemistry Journals. Organic Letters, 2020, 22, 4919-4921.	2.4	4
64	Confronting Racism in Chemistry Journals. ACS Applied Materials & Interfaces, 2020, 12, 28925-28927.	4.0	13
65	Confronting Racism in Chemistry Journals. Crystal Growth and Design, 2020, 20, 4201-4203.	1.4	1
66	Confronting Racism in Chemistry Journals. Chemical Reviews, 2020, 120, 5795-5797.	23.0	2
67	Confronting Racism in Chemistry Journals. ACS Catalysis, 2020, 10, 7307-7309.	5.5	1
68	Confronting Racism in Chemistry Journals. Biomacromolecules, 2020, 21, 2543-2545.	2.6	0
69	Confronting Racism in Chemistry Journals. Journal of Medicinal Chemistry, 2020, 63, 6575-6577.	2.9	0
70	Confronting Racism in Chemistry Journals. Macromolecules, 2020, 53, 5015-5017.	2.2	0
71	Confronting Racism in Chemistry Journals. Nano Letters, 2020, 20, 4715-4717.	4.5	5
72	Confronting Racism in Chemistry Journals. Organometallics, 2020, 39, 2331-2333.	1.1	0

#	Article	IF	CITATIONS
73	Confronting Racism in Chemistry Journals. Journal of the American Chemical Society, 2020, 142, 11319-11321.	6.6	1
74	Virtual Issue on Super-Resolution Far-Field Optical Microscopy. Journal of Physical Chemistry C, 2020, 124, 4927-4930.	1.5	3
75	Statistical Analysis of Physical Chemistry Data: Errors Are Not Mistakes. Journal of Physical Chemistry A, 2020, 124, 2109-2112.	1.1	6
76	Statistical Analysis of Physical Chemistry Data: Errors Are Not Mistakes. Journal of Physical Chemistry B, 2020, 124, 2061-2064.	1.2	0
77	Statistical Analysis of Physical Chemistry Data: Errors Are Not Mistakes. Journal of Physical Chemistry C, 2020, 124, 5889-5892.	1.5	2
78	Virtual Issue on Super-Resolution Far-Field Optical Microscopy. Journal of Physical Chemistry A, 2020, 124, 1669-1672.	1.1	2
79	Confronting Racism in Chemistry Journals. Accounts of Chemical Research, 2020, 53, 1257-1259.	7.6	Ο
80	Confronting Racism in Chemistry Journals. Journal of Physical Chemistry A, 2020, 124, 5271-5273.	1.1	0
81	Confronting Racism in Chemistry Journals. ACS Energy Letters, 2020, 5, 2291-2293.	8.8	Ο
82	Confronting Racism in Chemistry Journals. Journal of Chemical Information and Modeling, 2020, 60, 3325-3327.	2.5	0
83	Confronting Racism in Chemistry Journals. Journal of Proteome Research, 2020, 19, 2911-2913.	1.8	Ο
84	Confronting Racism in Chemistry Journals. Journal of Physical Chemistry B, 2020, 124, 5335-5337.	1.2	1
85	Confronting Racism in Chemistry Journals. Bioconjugate Chemistry, 2020, 31, 1693-1695.	1.8	Ο
86	Confronting Racism in Chemistry Journals. ACS Synthetic Biology, 2020, 9, 1487-1489.	1.9	0
87	Confronting Racism in Chemistry Journals. Journal of Chemical & Engineering Data, 2020, 65, 3403-3405.	1.0	0
88	Approaches to mid-infrared, super-resolution imaging and spectroscopy. Physical Chemistry Chemical Physics, 2020, 22, 4313-4325.	1.3	44
89	Chemical interface damping for propagating surface plasmon polaritons in gold nanostripes. Journal of Chemical Physics, 2020, 152, 024707.	1.2	3
90	Far-field midinfrared superresolution imaging and spectroscopy of single high aspect ratio gold nanowires. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 2288-2293.	3.3	28

#	Article	IF	CITATIONS
91	Infrared photothermal heterodyne imaging: Contrast mechanism and detection limits. Journal of Applied Physics, 2020, 127, .	1.1	49
92	Confronting Racism in Chemistry Journals. ACS Biomaterials Science and Engineering, 2020, 6, 3690-3692.	2.6	1
93	Confronting Racism in Chemistry Journals. ACS Omega, 2020, 5, 14857-14859.	1.6	1
94	Quantitative infrared photothermal microscopy. , 2020, , .		6
95	Confronting Racism in Chemistry Journals. ACS Applied Electronic Materials, 2020, 2, 1774-1776.	2.0	0
96	Confronting Racism in Chemistry Journals. Journal of Agricultural and Food Chemistry, 2020, 68, 6941-6943.	2.4	0
97	Confronting Racism in Chemistry Journals. ACS Earth and Space Chemistry, 2020, 4, 961-963.	1.2	0
98	Confronting Racism in Chemistry Journals. Environmental Science and Technology Letters, 2020, 7, 447-449.	3.9	0
99	Confronting Racism in Chemistry Journals. ACS Combinatorial Science, 2020, 22, 327-329.	3.8	0
100	Confronting Racism in Chemistry Journals. ACS Infectious Diseases, 2020, 6, 1529-1531.	1.8	0
101	Confronting Racism in Chemistry Journals. ACS Applied Bio Materials, 2020, 3, 3925-3927.	2.3	0
102	Confronting Racism in Chemistry Journals. Journal of Physical Chemistry C, 2020, 124, 14069-14071.	1.5	0
103	Confronting Racism in Chemistry Journals. ACS Macro Letters, 2020, 9, 1004-1006.	2.3	0
104	Confronting Racism in Chemistry Journals. Molecular Pharmaceutics, 2020, 17, 2229-2231.	2.3	1
105	Confronting Racism in Chemistry Journals. ACS Chemical Neuroscience, 2020, 11, 1852-1854.	1.7	1
106	Confronting Racism in Chemistry Journals. ACS Photonics, 2020, 7, 1586-1588.	3.2	0
107	Confronting Racism in Chemistry Journals. Environmental Science & Technology, 2020, 54, 7735-7737.	4.6	0
108	Confronting Racism in Chemistry Journals. Journal of Chemical Health and Safety, 2020, 27, 198-200.	1.1	0

#	Article	IF	CITATIONS
109	Virtual Issue on Polaritons in Physical Chemistry. Journal of Physical Chemistry Letters, 2020, 11, 7920-7924.	2.1	1
110	Virtual Issue on Super-Resolution Far-Field Optical Microscopy. Journal of Physical Chemistry B, 2020, 124, 1581-1584.	1.2	0
111	Mass loading effects in the acoustic vibrations of gold nanoplates. Nanoscale, 2019, 11, 16208-16213.	2.8	18
112	The fast and the furious: Ultrafast hot electrons in plasmonic metastructures. Size and structure matter. Nano Today, 2019, 27, 120-145.	6.2	112
113	The <i>JPC</i> Periodic Table. Journal of Physical Chemistry A, 2019, 123, 5837-5848.	1.1	2
114	The <i>JPC</i> Periodic Table. Journal of Physical Chemistry B, 2019, 123, 5973-5984.	1.2	1
115	The <i>JPC</i> Periodic Table. Journal of Physical Chemistry C, 2019, 123, 17063-17074.	1.5	1
116	The <i>JPC</i> Periodic Table. Journal of Physical Chemistry Letters, 2019, 10, 4051-4062.	2.1	2
117	Long Lifetime and Coupling of Acoustic Vibrations of Gold Nanoplates on Unsupported Thin Films. Journal of Physical Chemistry A, 2019, 123, 10339-10346.	1.1	15
118	Making waves: Radiation damping in metallic nanostructures. Journal of Chemical Physics, 2019, 151, 080901.	1.2	25
119	Light-Like Group Velocities and Long Lifetimes for Leaky Surface Plasmon Polaritons in Noble Metal Nanostripes. Journal of Physical Chemistry C, 2019, 123, 15729-15737.	1.5	5
120	Attenuation of acoustic waves in ultrafast microscopy experiments. Journal of Applied Physics, 2019, 125, .	1.1	6
121	Strong vibrational coupling in room temperature plasmonic resonators. Nature Communications, 2019, 10, 1527.	5.8	35
122	Tribute to Hai-Lung Dai. Journal of Physical Chemistry A, 2019, 123, 10463-10464.	1.1	0
123	Ultrafast measurements of the dynamics of single nanostructures: a review. Reports on Progress in Physics, 2019, 82, 016401.	8.1	50
124	Subdiffraction Infrared Imaging of Mixed Cation Perovskites: Probing Local Cation Heterogeneities. ACS Energy Letters, 2018, 3, 469-475.	8.8	54
125	When Can the Elastic Properties of Simple Liquids Be Probed Using High-Frequency Nanoparticle Vibrations?. Journal of Physical Chemistry C, 2018, 122, 13347-13353.	1.5	18
126	Strong Exciton–Plasmon Coupling in Silver Nanowire Nanocavities. Journal of Physical Chemistry Letters, 2018, 9, 1676-1681.	2.1	35

#	Article	IF	CITATIONS
127	On the measurement of relaxation times of acoustic vibrations in metal nanowires. Physical Chemistry Chemical Physics, 2018, 20, 17687-17693.	1.3	23
128	Plasmons for Energy Conversion. ACS Energy Letters, 2018, 3, 1467-1469.	8.8	35
129	Dynamics of Surface Plasmon Polaritons in Metal Nanowires. Journal of Physical Chemistry C, 2017, 121, 5445-5459.	1.5	40
130	Photothermal Microscopy of Coupled Nanostructures and the Impact of Nanoscale Heating in Surface-Enhanced Raman Spectroscopy. Journal of Physical Chemistry C, 2017, 121, 11623-11631.	1.5	38
131	What's so Hot about Electrons in Metal Nanoparticles?. ACS Energy Letters, 2017, 2, 1641-1653.	8.8	341
132	Surface Plasmon Polariton Interference in Gold Nanoplates. Journal of Physical Chemistry Letters, 2017, 8, 4935-4941.	2.1	10
133	Understanding Hot-Electron Generation and Plasmon Relaxation in Metal Nanocrystals: Quantum and Classical Mechanisms. ACS Photonics, 2017, 4, 2759-2781.	3.2	233
134	Super-Resolution Far-Field Infrared Imaging by Photothermal Heterodyne Imaging. Journal of Physical Chemistry B, 2017, 121, 8838-8846.	1.2	123
135	New Physical Chemistry Insight for Solid-State Materials. Journal of Physical Chemistry C, 2017, 121, 13984-13985.	1.5	1
136	Brillouin Oscillations from Single Au Nanoplate Opto-Acoustic Transducers. ACS Nano, 2017, 11, 8064-8071.	7.3	29
137	Nanoparticles at SEA: Seeding, Etching, and Applications. Journal of Physical Chemistry Letters, 2016, 7, 728-729.	2.1	0
138	Role of Resonances in the Transmission of Surface Plasmon Polaritons between Nanostructures. ACS Nano, 2016, 10, 3375-3381.	7.3	21
139	Spatial modulation spectroscopy imaging of nano-objects of different sizes and shapes. Applied Optics, 2016, 55, 796.	2.1	9
140	Super-resolution Mid-infrared Imaging using Photothermal Microscopy. , 2016, , .		3
141	Compressible Viscoelastic Liquid Effects Generated by the Breathing Modes of Isolated Metal Nanowires. Nano Letters, 2015, 15, 3964-3970.	4.5	39
142	Photonic–Plasmonic Devices Created by Templated Self-Assembly. Journal of Physical Chemistry Letters, 2015, 6, 2112-2113.	2.1	1
143	Imaging nano-objects by linear and nonlinear optical absorption microscopies. Nanotechnology, 2015, 26, 354001.	1.3	18
144	Transient absorption microscopy studies of single metal and semiconductor nanostructures. Proceedings of SPIE, 2015, , .	0.8	1

#	Article	IF	CITATIONS
145	Spatial modulation spectroscopy for imaging and quantitative analysis of single dye-doped organic nanoparticles inside cells. Nanoscale, 2015, 7, 9779-9785.	2.8	9
146	Absorption Spectroscopy of Single Optically Trapped Gold Nanorods. Nano Letters, 2015, 15, 7731-7735.	4.5	36
147	Super-resolution imaging with mid-IR photothermal microscopy on the single particle level. Proceedings of SPIE, 2015, , .	0.8	6
148	Nearâ€Infrared Croconaine Rotaxanes and Doped Nanoparticles for Enhanced Aqueous Photothermal Heating. Chemistry - A European Journal, 2014, 20, 12628-12635.	1.7	38
149	Spatial modulation spectroscopy of graphene sheets. Journal of Chemical Physics, 2014, 140, 074203.	1.2	7
150	Time-Resolved Studies of the Acoustic Vibrational Modes of Metal and Semiconductor Nano-objects. Journal of Physical Chemistry Letters, 2014, 5, 866-874.	2.1	66
151	Management Strategies for the Nanoscale. Journal of Physical Chemistry Letters, 2014, 5, 1496-1497.	2.1	Ο
152	Effect of substrate discontinuities on the propagating surface plasmon polariton modes in gold nanobars. Nanoscale, 2014, 6, 14289-14296.	2.8	12
153	Imaging and Analysis of Single Optically Trapped Gold Nanoparticles Using Spatial Modulation Spectroscopy. Journal of Physical Chemistry Letters, 2014, 5, 2910-2915.	2.1	17
154	Designing Plasmon Resonances. Journal of Physical Chemistry Letters, 2014, 5, 1583-1584.	2.1	14
155	Surface Plasmon Polariton Propagation and Coupling in Gold Nanostructures. Journal of Physical Chemistry C, 2014, 118, 8603-8609.	1.5	24
156	Graphical Excellence. Journal of Physical Chemistry Letters, 2014, 5, 2118-2120.	2.1	21
157	Transient Absorption Spectroscopy of Excitons in an Individual Suspended Metallic Carbon Nanotube. Journal of Physical Chemistry Letters, 2013, 4, 3050-3055.	2.1	22
158	Activated photothermal heating using croconaine dyes. Chemical Science, 2013, 4, 4240.	3.7	83
159	Picosecond Kinetics of Strongly Coupled Excitons and Surface Plasmon Polaritons. Journal of Physical Chemistry B, 2013, 117, 4340-4346.	1.2	44
160	Damping of the acoustic vibrations of a suspended gold nanowire in air and water environments. Physical Chemistry Chemical Physics, 2013, 15, 4169-4176.	1.3	76
161	Optical studies of single metal nanoparticles. Physical Chemistry Chemical Physics, 2013, 15, 4090.	1.3	6
162	CdSe nanowire solar cells using carbazole as a surface modifier. Journal of Materials Chemistry A, 2013, 1, 5487.	5.2	31

#	Article	IF	CITATIONS
163	Optical detection of single nano-objects by transient absorption microscopy. Analyst, The, 2013, 138, 25-31.	1.7	29
164	Spectroscopy Beyond the Single-Particle Limit. Science, 2013, 341, 36-37.	6.0	5
165	Optical and Dynamical Properties of Chemically Synthesized Gold Nanoplates. Journal of Physical Chemistry C, 2013, 117, 1447-1452.	1.5	41
166	Detection of single gold nanoparticles using spatial modulation spectroscopy implemented with a galvo-scanning mirror system. Applied Optics, 2013, 52, 7806.	0.9	18
167	Imaging the extent of plasmon excitation in Au nanowires using pump-probe microscopy. Optics Letters, 2013, 38, 1265.	1.7	36
168	Charge Carrier Trapping and Acoustic Phonon Modes in Single CdTe Nanowires. ACS Nano, 2012, 6, 5274-5282.	7.3	38
169	Spectroscopy, Imaging, and Solar Energy Conversion with Plasmons. Journal of Physical Chemistry Letters, 2012, 3, 1421-1421.	2.1	10
170	Metal at the Nanoscale: Manipulating Matter to Control Light. Journal of Physical Chemistry Letters, 2012, 3, 959-960.	2.1	0
171	Length Scales for Plasmon Modes in Metal Nanostructures and 2D Spectroscopy in the Ultraviolet. Journal of Physical Chemistry Letters, 2012, 3, 2724-2725.	2.1	0
172	Transient Absorption Spectroscopy and Imaging of Individual Chirality-Assigned Single-Walled Carbon Nanotubes. ACS Nano, 2012, 6, 5083-5090.	7.3	41
173	Assembling Atoms to Clusters and Clusters to Crystals. Journal of Physical Chemistry Letters, 2011, 2, 1111-1112.	2.1	3
174	Studies of Intrinsic Hot Phonon Dynamics in Suspended Graphene by Transient Absorption Microscopy. Nano Letters, 2011, 11, 3184-3189.	4.5	99
175	Virtual Issue: Plasmon Resonances - A Physical Chemistry Perspective. Journal of Physical Chemistry C, 2011, 115, 15121-15123.	1.5	18
176	Optical Studies of Dynamics in Noble Metal Nanostructures. Chemical Reviews, 2011, 111, 3858-3887.	23.0	1,254
177	Ultrafast relaxation of hot optical phonons in monolayer and multilayer graphene on different substrates. Surface Science, 2011, 605, 1657-1661.	0.8	50
178	Ultrafast transient absorption studies of single metal and semiconductor nanowires. Proceedings of SPIE, 2010, , .	0.8	2
179	Ultrafast Transient Absorption Microscopy Studies of Carrier Dynamics in Epitaxial Graphene. Nano Letters, 2010, 10, 1308-1313.	4.5	164
180	Ultrahigh Fields in Ultrasmall Spaces. Journal of Physical Chemistry Letters, 2010, 1, 2498-2498.	2.1	0

#	Article	IF	CITATIONS
181	Imaging and Absolute Extinction Cross-Section Measurements of Nanorods and Nanowires through Polarization Modulation Microscopy. Journal of Physical Chemistry C, 2010, 114, 16029-16036.	1.5	30
182	Experimental Determination of Single CdSe Nanowire Absorption Cross Sections through Photothermal Imaging. ACS Nano, 2010, 4, 358-364.	7.3	52
183	Ultrafast studies of single semiconductor and metal nanostructures through transient absorption microscopy. Chemical Science, 2010, 1, 303.	3.7	91
184	Ultrafast transient absorption microscopy studies of carrier dynamics in epitaxial graphene. Proceedings of SPIE, 2010, , .	0.8	0
185	Coupling to light, and transport and dissipation of energy in silver nanowires. Physical Chemistry Chemical Physics, 2009, 11, 5889.	1.3	65
186	Ultrafast Transient Absorption Measurements of Charge Carrier Dynamics in Single IIâ^'VI Nanowires. Journal of Physical Chemistry C, 2009, 113, 19077-19081.	1.5	58
187	Vibrational Dynamics of Silver Nanocubes and Nanowires Studied by Single-Particle Transient Absorption Spectroscopy. Advanced Functional Materials, 2008, 18, 3809-3817.	7.8	81
188	Dark-field microscopy studies of single metal nanoparticles: understanding the factors that influence the linewidth of the localized surface plasmon resonance. Journal of Materials Chemistry, 2008, 18, 1949.	6.7	441
189	Transient Absorption Studies of Single Silver Nanocubes. Journal of Physical Chemistry C, 2008, 112, 7535-7539.	1.5	75
190	Photothermal Properties of Gold Nanoparticles. Zeitschrift Fur Physikalische Chemie, 2007, 221, 361-376.	1.4	40
191	Time-resolved spectroscopy of silver nanocubes: Observation and assignment of coherently excited vibrational modes. Journal of Chemical Physics, 2007, 126, 094709.	1.2	72
192	Vibrational Response of Auâ^'Ag Nanoboxes and Nanocages to Ultrafast Laser-Induced Heating. Nano Letters, 2007, 7, 1059-1063.	4.5	50
193	Correlated Rayleigh Scattering Spectroscopy and Scanning Electron Microscopy Studies of Auâ^'Ag Bimetallic Nanoboxes and Nanocages. Journal of Physical Chemistry C, 2007, 111, 12558-12565.	1.5	73
194	Is perfect better?. Nature Materials, 2007, 6, 716-718.	13.3	21
195	Optical Properties of Auâ^'Ag Nanoboxes Studied by Single Nanoparticle Spectroscopyâ€. Journal of Physical Chemistry B, 2006, 110, 19923-19928.	1.2	87
196	COHERENT EXCITATION OF VIBRATIONAL MODES IN METALLIC NANOPARTICLES. Annual Review of Physical Chemistry, 2006, 57, 403-430.	4.8	261
197	Ultrafast Laser Studies of the Photothermal Properties of Gold Nanocages. Journal of Physical Chemistry B, 2006, 110, 1520-1524.	1.2	127
198	On the temperature stability of gold nanorods: comparison between thermal and ultrafast laser-induced heating. Physical Chemistry Chemical Physics, 2006, 8, 814-821.	1.3	292

#	Article	IF	CITATIONS
199	Contributions from radiation damping and surface scattering to the linewidth of the longitudinal plasmon band of gold nanorods: a single particle study. Physical Chemistry Chemical Physics, 2006, 8, 3540.	1.3	293
200	Gold nanostructures: engineering their plasmonic properties for biomedical applications. Chemical Society Reviews, 2006, 35, 1084.	18.7	1,595
201	Vibrational spectroscopy and energy relaxation of nanocubes, nanoboxes, and nanocages. , 2006, , .		0
202	Crystal structure dependence of the elastic constants of gold nanorods. Journal of Materials Chemistry, 2006, 16, 3957.	6.7	105
203	Time-resolved measurements of the elastic properties of metal particles of different shapes. , 2005, 5929, 129.		0
204	Time-Resolved and Steady State Spectroscopy of Polydisperse Colloidal Silver Nanoparticle Samples. Journal of Physical Chemistry B, 2005, 109, 14426-14432.	1.2	23
205	Electronic Dephasing in Bimetallic Goldâ [°] Silver Nanoparticles Examined by Single Particle Spectroscopy. Journal of Physical Chemistry B, 2005, 109, 20324-20330.	1.2	73
206	Coherent Excitation of Vibrational Modes of Gold Nanorods. , 2005, , 125-138.		0
207	Ultrafast Dynamics of Metal Nanospheres and Nanorods. , 2004, , 97-118.		3
208	Measurements of the material properties of metal nanoparticles by time-resolved spectroscopy. Physical Chemistry Chemical Physics, 2004, 6, 5263.	1.3	190
209	Investigation of the properties of gold nanoparticles in aqueous solution at extremely high lattice temperatures. Chemical Physics Letters, 2004, 391, 220-225.	1.2	84
210	Determination of the Elastic Constants of Gold Nanorods Produced by Seed Mediated Growth. Nano Letters, 2004, 4, 2493-2497.	4.5	72
211	Coherent excitation of vibrational modes in nanospheres and nanorods. , 2004, , .		1
212	Electron-phonon coupling and heat dissipation in metal nanoparticles. International Journal of Nanotechnology, 2004, 1, 307.	0.1	21
213	Heat dissipation in gold–silica core-shell nanoparticles. Chemical Physics Letters, 2003, 372, 767-772.	1.2	80
214	Vibrational Response of Nanorods to Ultrafast Laser Induced Heating:Â Theoretical and Experimental Analysis. Journal of the American Chemical Society, 2003, 125, 14925-14933.	6.6	238
215	Softening of the Symmetric Breathing Mode in Gold Particles by Laser-Induced Heatingâ€. Journal of Physical Chemistry B, 2003, 107, 7472-7478.	1.2	81
216	Preface to the Arnim Henglein Festschrift. Journal of Physical Chemistry B, 2003, 107, 7226-7226.	1.2	0

#	Article	IF	CITATIONS
217	Laser-Induced Alloying in Metal Nanoparticles: Controlling Spectral Properties with Light. ACS Symposium Series, 2003, , 106-122.	0.5	3
218	<title>Coherent excitation of vibrational modes in nanoparticles and nanorods: what do we really measure?</title> . , 2003, , .		0
219	Mechanical Properties of Small Metal Spheres and Rods. , 2003, , 77-86.		0
220	Coherent vibrational motion in metal particles: Determination of the vibrational amplitude and excitation mechanism. Journal of Chemical Physics, 2002, 116, 8048-8055.	1.2	161
221	Photophysics of Metal Nanoparticles: Heat Dissipation and Coherent Excitation of Phonon Modes. , 2002, , .		4
222	Excitation of mechanical modes in gold nanorods. , 2002, , .		1
223	Theory of Acoustic Breathing Modes of Coreâ `Shell Nanoparticles. Journal of Physical Chemistry B, 2002, 106, 1399-1402.	1.2	41
224	Heat Dissipation for Au Particles in Aqueous Solution:Â Relaxation Time versus Size. Journal of Physical Chemistry B, 2002, 106, 7029-7033.	1.2	316
225	Coherent Excitation of Vibrational Modes in Gold Nanorods. Journal of Physical Chemistry B, 2002, 106, 743-747.	1.2	69
226	Tuning the spectral and temporal response in PtAu core–shell nanoparticles. Journal of Chemical Physics, 2001, 114, 2760-2765.	1.2	67
227	Photophysics and spectroscopy of metal particles. Pure and Applied Chemistry, 2000, 72, 189-197.	0.9	23
228	Effect of ion induced damage on carrier lifetimes in strained CdZnSe/ZnSe quantum wells. Journal of Applied Physics, 2000, 87, 3063-3067.	1.1	5
229	Electron-phonon coupling dynamics in very small (between 2 and 8 nm diameter) Au nanoparticles. Journal of Chemical Physics, 2000, 112, 5942-5947.	1.2	203
230	Laser-Induced Inter-Diffusion in AuAg Coreâ^'Shell Nanoparticles. Journal of Physical Chemistry B, 2000, 104, 11708-11718.	1.2	324
231	Coherent Excitation of Acoustic Breathing Modes in Bimetallic Coreâ^'Shell Nanoparticles. Journal of Physical Chemistry B, 2000, 104, 5053-5055.	1.2	86
232	Photophysics of Nanometer Sized Metal Particles:  Electronâ^'Phonon Coupling and Coherent Excitation of Breathing Vibrational Modes. Journal of Physical Chemistry B, 2000, 104, 9954-9965.	1.2	294
233	Vâ^'V Energy Transfer from Highly Vibrationally Excited Molecules through Transition Dipole Coupling:Á A Quantitative Test on Energy Transfer from SO2(v≫ 0) to SF6(31)â€. Journal of Physical Chemistry A, 2000, 104, 10460-10463.	1.1	13
234	Comment on "Optically Induced Damping of the Surface Plasmon Resonance in Gold Colloids― Physical Review Letters, 1999, 82, 3188-3188.	2.9	14

#	Article	IF	CITATIONS
235	Size dependent properties of Au particles: Coherent excitation and dephasing of acoustic vibrational modes. Journal of Chemical Physics, 1999, 111, 8613-8621.	1.2	244
236	Dynamics of Semiconductor-to-Dye Electron Transfer for Anthracene Dyes Bound to Different Sized TiO2 Particles. Journal of Physical Chemistry B, 1999, 103, 9104-9111.	1.2	36
237	Ultrafast study of electron–phonon coupling in colloidal gold particles. Chemical Physics Letters, 1998, 284, 135-141.	1.2	156
238	Spectroscopy and Dynamics of Nanometer-Sized Noble Metal Particles. Journal of Physical Chemistry B, 1998, 102, 6958-6967.	1.2	315
239	Effect of Water on the Electron Transfer Dynamics of 9-Anthracenecarboxylic Acid Bound to TiO2 Nanoparticles:  Demonstration of the Marcus Inverted Region. Journal of Physical Chemistry B, 1998, 102, 607-614.	1.2	77
240	Picosecond Dynamics of Silver Nanoclusters. Photoejection of Electrons and Fragmentation. Journal of Physical Chemistry B, 1998, 102, 3123-3128.	1.2	580
241	Effect of Structure on Electron Transfer Reactions between Anthracene Dyes and TiO2Nanoparticles. Journal of Physical Chemistry B, 1998, 102, 9508-9517.	1.2	99
242	<title>Probing photoinduced electron transfer reactions at semiconductor-liquid interfaces</title> . , 1998, 3273, 24.		1
243	Observation of acoustic quantum beats in nanometer sized Au particles. Journal of Chemical Physics, 1998, 108, 9210-9213.	1.2	114
244	Ultrafast study of interfacial electron transfer between 9-anthracene-carboxylate and TiO2 semiconductor particles. Journal of Chemical Physics, 1997, 107, 8064-8072.	1.2	89
245	Collisional energy transfer of highly vibrationally excited NO2: The role of intramolecular vibronic coupling and the transition dipole coupling mechanism. Journal of Chemical Physics, 1997, 107, 2890-2902.	1.2	51
246	Ultrafast Photophysical Investigation of Cresyl Violet Aggregates Adsorbed onto Nanometer-Sized Particles of SnO2 and SiO2. Journal of Physical Chemistry B, 1997, 101, 4826-4830.	1.2	65
247	Relaxation dynamics in the first excited singlet state of a cyanine dye: HITC. Chemical Physics Letters, 1996, 258, 180-186.	1.2	35
248	Ultrafast Investigation of Vibrational Relaxation in the S1Electronic State of HITC. The Journal of Physical Chemistry, 1996, 100, 19764-19770.	2.9	47
249	Renner–Teller effect on the highly excited bending levels of ã 1A1 CH2. Journal of Chemical Physics, 1995, 102, 6641-6645.	1.2	29
250	Intramolecular electronic coupling enhanced collisional deactivation of highly vibrationally excited molecules. Journal of Chemical Physics, 1995, 102, 8677-8680.	1.2	49
251	DISPERSED AND STIMULATED EMISSION STUDIES OF THE EXCITED VIBRATIONAL LEVELS OF A TRANSIENT MOLECULE: SINGLET METHYLENE. Advanced Series in Physical Chemistry, 1995, , 183-221.	1.5	1
252	Collisional deactivation of highly vibrationally excited NO2 monitored by timeâ€resolved Fourier transform infrared emission spectroscopy. Journal of Chemical Physics, 1994, 100, 7832-7835.	1.2	56

#	Article	IF	CITATIONS
253	Observation of large vibrationâ€toâ€vibration energy transfer collisions (ΔE≳3500 cmâ^'1) in quenching of highly excited NO2 by CO2 and N2O. Journal of Chemical Physics, 1994, 101, 8554-8563.	1.2	45
254	Stateâ€ŧoâ€state rotational energy transfer and reaction with ketene of highly vibrationally excited b̃ 1B1 CH2 by timeâ€resolved Fourier transform emission spectroscopy. Journal of Chemical Physics, 1993, 98, 6906-6916.	1.2	18
255	Fourier transform dispersed fluorescence spectroscopy: Observation of new vibrational levels in the 5000–8000 cmâ~'1region ofaÌf 1A1CH2. Journal of Chemical Physics, 1993, 98, 2469-2472.	1.2	42
256	Strong asymmetry induced ΔKa=3 transitions in the CH2 bÌf 1B1→aÌf 1A1 spectrum: A study by Fourie transform emission spectroscopy. Journal of Chemical Physics, 1992, 97, 7010-7012.	^r 1.2	10
257	High resolution Fourier transform stimulated emission and molecular beam holeâ€burning spectroscopy with picosecond excitation sources: Theoretical and experimental results. Journal of Chemical Physics, 1992, 96, 179-197.	1.2	7
258	Timeâ€resolved Fourier transform spectroscopy with 0.25 cmâ^'1spectral and <10â^'7s time resolution in the visible region. Review of Scientific Instruments, 1992, 63, 3261-3267.	0.6	77
259	Theory of rotational coherence spectroscopy as implemented by picosecond fluorescence depletion schemes. Journal of Chemical Physics, 1991, 94, 7649-7666.	1.2	36
260	The dependence of Fourier transform nonlinear Raman spectroscopies on the temporal characteristics of the excitation fields. Journal of Chemical Physics, 1989, 91, 1478-1497.	1.2	13
261	Fourier transform coherent Raman spectroscopy. Chemical Physics Letters, 1987, 134, 503-506.	1.2	22