Diane K Smith

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6535150/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	An Active‧ite Sulfonate Group Creates a Fast Water Oxidation Electrocatalyst That Exhibits High Activity in Acid. Angewandte Chemie, 2021, 133, 1564-1569.	2.0	4
2	An Activeâ€6ite Sulfonate Group Creates a Fast Water Oxidation Electrocatalyst That Exhibits High Activity in Acid. Angewandte Chemie - International Edition, 2021, 60, 1540-1545.	13.8	10
3	Exploring the Role of Hâ€Bonding in Organic Electrochemistry – From Supramolecular Applications to Mechanistic Investigations. Chemical Record, 2021, 21, 2488-2501.	5.8	3
4	Redox-Responsive H-Bonding: Amplifying the Effect of Electron Transfer Using Proton-Coupled Electron Transfer. Journal of the American Chemical Society, 2020, 142, 17271-17276.	13.7	10
5	Click chemistry-facilitated comprehensive identification of proteins adducted by antimicrobial 5-nitroimidazoles for discovery of alternative drug targets against giardiasis. PLoS Neglected Tropical Diseases, 2020, 14, e0008224.	3.0	9
6	The Role of H-Bonding in Nonconcerted Proton-Coupled Electron Transfer: Explaining the Voltammetry of Phenylenediamines in the Presence of Weak Bases in Acetonitrile. Journal of Physical Chemistry C, 2019, 123, 23390-23402.	3.1	10
7	Redox-Responsive Dimerization in a Ferrocene-Ureidopyrimidone Supramolecular Assembly. Journal of Organic Chemistry, 2018, 83, 11595-11603.	3.2	10
8	Use of an electrochemically-induced proton-coupled electron transfer reaction to control dimerization in a ureidopyrimidone 4 H-bond array. Chemical Communications, 2016, 52, 7253-7256.	4.1	10
9	Use of a Wedge Scheme to Describe Intermolecular Proton-Coupled Electron Transfer through the H-bond Complex Formed Between a Phenylenediamine-Based Urea and 1,8-Naphthyridine. Journal of Physical Chemistry C, 2015, 119, 12865-12874.	3.1	9
10	Kinetic Stabilization of Quinone Dianions via Hydrogen Bonding by Water in Aprotic Solvents. Journal of Physical Chemistry C, 2015, 119, 20319-20327.	3.1	28
11	Nitrotriazole- and Imidazole-Based Amides and Sulfonamides as Antitubercular Agents. Antimicrobial Agents and Chemotherapy, 2014, 58, 6828-6836.	3.2	25
12	How Do Proximal Hydroxy or Methoxy Groups on the Bidentate Ligand Affect [(2,2′;6′,2"â€Terpyridine)Ru(N,N)X] Waterâ€Oxidation Catalysts? Synthesis, Characterization, and Reactiv at Acidic and Nearâ€Neutral pH. European Journal of Inorganic Chemistry, 2014, 2014, 676-689.	ity2.0	61
13	Electrochemical Evidence for Intermolecular Proton-Coupled Electron Transfer through a Hydrogen Bond Complex in a <i>p</i> -Phenylenediamine-Based Urea. Introduction of the "Wedge Scheme―as a Useful Means To Describe Reactions of This Type. Journal of the American Chemical Society, 2013, 135, 18930-18941	13.7	28
14	The Effect of H-Bonding and Proton Transfer on the Voltammetry of 2,3,5,6-Tetramethyl- <i>p</i> -phenylenediamine in Acetonitrile. An Unexpectedly Complex Mechanism for a Simple Redox Couple. Journal of Physical Chemistry C, 2010, 114, 8938-8949.	3.1	25
15	Electrochemical Studies of p-Phenylenediamines in Acetonitrile in the Presence of Acids. ECS Meeting Abstracts, 2010, , .	0.0	0
16	Electrochemically Controlled Hydrogen Bonding. Electrolyte Effects in an Oxidation-Based Arylureaâ^'Amide System. Journal of the American Chemical Society, 2008, 130, 10070-10071.	13.7	24
17	Electrochemically Controlled Hydrogen Bonding. Nitrobenzenes as Simple Redox-Dependent Receptors for Arylureas. Journal of the American Chemical Society, 2005, 127, 6423-6429.	13.7	82
18	Electrochemically Controlled Hydrogen Bonding.o-Quinones as Simple Redox-Dependent Receptors for Arylureas. Journal of Organic Chemistry, 2000, 65, 8831-8838.	3.2	100

DIANE K SMITH

#	Article	IF	CITATIONS
19	Development of Chemical Sensors Based on Redox-Dependent Receptors. Preparation and Characterization of Phenanthrenequinone-Modified Electrodes. Analytical Chemistry, 2000, 72, 1860-1865.	6.5	37
20	Resolution of trans-Cyclohexane-1,2-diamine and Determination of the Enantiopurity Using Chiral Solid-Phase HPLC Techniques and Polarimetry. Journal of Chemical Education, 1998, 75, 1459.	2.3	15
21	Electrochemically-Controlled Hydrogen Bonding. Selective Recognition of Urea and Amide Derivatives by Simple Redox-Dependent Receptors. Journal of the American Chemical Society, 1996, 118, 3976-3977.	13.7	117
22	N,N′-dimethyl-2,7-diazapyrenium: a redox-dependent receptor for aromatic carboxylates. Journal of Electroanalytical Chemistry, 1996, 414, 107-114.	3.8	4
23	Solvent effects on the redox-dependent binding properties of a viologen-based receptor for neutral organic molecules. Analytical Chemistry, 1995, 67, 3733-3739.	6.5	16
24	Electrochemical Characterization of a Viologen-Based Redox-Dependent Receptor for Neutral Organic Molecules. Analytical Chemistry, 1994, 66, 3013-3020.	6.5	39
25	Redox-dependent binding in a viologen host. Journal of Electroanalytical Chemistry, 1992, 340, 341-348.	3.8	10