Kim J R Rasmussen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6534863/publications.pdf Version: 2024-02-01

KIM I P PAGMUSSEN

#	Article	IF	CITATIONS
1	Influence of the imperfection direction on the ultimate response of steel frames in advanced analysis. Journal of Constructional Steel Research, 2022, 190, 107137.	1.7	13
2	Simplified expressions for reliability assessments in code calibration. Engineering Structures, 2022, 256, 114013.	2.6	8
3	Analytical solutions for buckling of space frames subjected to torsional loadings. Thin-Walled Structures, 2022, 173, 108965.	2.7	3
4	Development of friction-damped seismic fuses for steel storage racks. Journal of Constructional Steel Research, 2022, 192, 107216.	1.7	4
5	System-based reliability analysis of stainless steel frames subjected to gravity and wind loads. Structural Safety, 2022, 97, 102211.	2.8	8
6	Numerical investigation of the strength and design of cold-formed steel built-up columns. Journal of Constructional Steel Research, 2022, 193, 107276.	1.7	28
7	Verification of void growth-based exponential damage function for ductile crack initiation over the full range of stress triaxialities. Engineering Fracture Mechanics, 2022, 269, 108571.	2.0	4
8	Buckling shape control in metal plates via material distribution. Thin-Walled Structures, 2022, 179, 109626.	2.7	1
9	Full-Range Behavior of Top-and-Seat Angle Connections. Journal of Structural Engineering, 2021, 147, .	1.7	10
10	System-based reliability analysis of stainless steel frames under gravity loads. Engineering Structures, 2021, 231, 111775.	2.6	19
11	Global buckling capacity of cold-rolled aluminium alloy channel section beams. Journal of Constructional Steel Research, 2021, 179, 106521.	1.7	11
12	Tests and design of built-up section columns. Journal of Constructional Steel Research, 2021, 181, 106619.	1.7	35
13	Statistical data for systemâ€based reliability analysis of stainless steel structures with hollow sections. Ce/Papers, 2021, 4, 1565-1574.	0.1	0
14	Buckling Curves for Cold-Formed Stainless-Steel Columns and Beams. Journal of Structural Engineering, 2021, 147, .	1.7	7
15	Generalised Component Method-based finite element analysis of steel frames. Journal of Constructional Steel Research, 2021, 187, 106949.	1.7	13
16	Distortional buckling behaviour and strength of cold-rolled aluminium alloy beams. Journal of Constructional Steel Research, 2021, 187, 106980.	1.7	4
17	Full-range behaviour of double web angle connections. Journal of Constructional Steel Research, 2020, 166, 105907.	1.7	12
18	Experiments on Long-Span Cold-Formed Steel Single C-Section Portal Frames. Journal of Structural Engineering, 2020, 146, .	1.7	14

#	Article	IF	CITATIONS
19	Statistical analysis of the material, geometrical and imperfection characteristics of structural stainless steels and members. Journal of Constructional Steel Research, 2020, 175, 106378.	1.7	41
20	The mechanics of built-up cold-formed steel members. Thin-Walled Structures, 2020, 154, 106756.	2.7	51
21	System reliability-based limit state design of support scaffolding systems. Engineering Structures, 2020, 216, 110677.	2.6	14
22	Geometric and material nonlinear analysis of thin-walled members with arbitrary open cross-section. Thin-Walled Structures, 2020, 153, 106783.	2.7	9
23	Utilization of Waste Materials for the Manufacturing of Better-Quality Wear and Corrosion-Resistant Steels. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2020, 51, 2404-2410.	1.1	3
24	Seismic tests of drive-in steel storage racks in cross-aisle direction. Journal of Constructional Steel Research, 2019, 162, 105701.	1.7	9
25	Behaviour of H-section purlin connections in resisting progressive collapse of roofs. Engineering Structures, 2019, 201, 109849.	2.6	1
26	Recent developments of the Component Method. Ce/Papers, 2019, 3, 313-323.	0.1	1
27	Analytical buckling solutions for Levy-type plates with edge and interior point-support(s). Thin-Walled Structures, 2019, 145, 106419.	2.7	12
28	Design of cold-formed steel single C-section portal frames. Journal of Constructional Steel Research, 2019, 162, 105722.	1.7	13
29	Mechanical properties and residual stresses in cold-rolled aluminium channel sections. Engineering Structures, 2019, 199, 109562.	2.6	20
30	Behaviour and modelling of connections in cold-formed steel single C-section portal frames. Thin-Walled Structures, 2019, 143, 106233.	2.7	25
31	Experimental Full-Range Behavior Assessment of Bolted Moment End-Plate Connections. Journal of Structural Engineering, 2019, 145, 04019079.	1.7	20
32	Identification of critical members for progressive collapse analysis of single-layer latticed domes. Engineering Structures, 2019, 188, 111-120.	2.6	16
33	Experimental and numerical study of connection effects in long-span cold-formed steel double channel portal frames. Journal of Constructional Steel Research, 2019, 155, 480-491.	1.7	23
34	System-based limit state design criterion for 3D steel frames under wind loads. Journal of Constructional Steel Research, 2019, 157, 440-449.	1.7	12
35	Numerical modelling of cold-formed steel single C-section portal frames. Journal of Constructional Steel Research, 2019, 158, 143-155.	1.7	18
36	An energy-based approach to buckling modal decomposition of thin-walled members with arbitrary cross sections, Part 1: Derivation. Thin-Walled Structures, 2019, 138, 496-517.	2.7	19

#	Article	IF	CITATIONS
37	System reliability-based criteria for the design of steel storage rack frames by advanced analysis: Part Il – Reliability analysis and design applications. Thin-Walled Structures, 2019, 141, 725-739.	2.7	12
38	System reliability-based criteria for the design of steel storage rack frames by advanced analysis: Part I – Statistical characterisation of system strength. Thin-Walled Structures, 2019, 141, 713-724.	2.7	8
39	Flexural rigidity of cold-formed steel built-up members. Thin-Walled Structures, 2019, 140, 438-449.	2.7	43
40	An energy-based approach to buckling modal decomposition of thin-walled members with arbitrary cross-sections, Part 2: Modified global torsion modes, examples. Thin-Walled Structures, 2019, 138, 518-531.	2.7	15
41	Experimental investigation of long-span cold-formed steel double channel portal frames. Journal of Constructional Steel Research, 2019, 155, 316-330.	1.7	25
42	Reliability calibrations for the design of cold-formed steel portal frames by advanced analysis. Engineering Structures, 2019, 182, 164-171.	2.6	18
43	Generalised component model for structural steel joints. Journal of Constructional Steel Research, 2019, 153, 330-342.	1.7	22
44	Experimental study on the composite action in sheathed and bare built-up cold-formed steel columns. Thin-Walled Structures, 2018, 127, 290-305.	2.7	82
45	System reliability-based Direct Design Method for space frames with cold–formed steel hollow sections. Engineering Structures, 2018, 166, 79-92.	2.6	25
46	Elastic buckling analysis of cold-formed steel built-up sections with discrete fasteners using the compound strip method. Thin-Walled Structures, 2018, 124, 58-71.	2.7	34
47	A unified approach to meshless analysis of thin to moderately thick plates based on a shear-locking-free Mindlin theory formulation. Thin-Walled Structures, 2018, 124, 161-179.	2.7	12
48	Flexural behaviour of steel storage rack beam-to-upright bolted connections. Thin-Walled Structures, 2018, 124, 202-217.	2.7	27
49	System Reliabilities of Planar Gravity Steel Frames Designed by the Inelastic Method in AISC 360-10. Journal of Structural Engineering, 2018, 144, .	1.7	16
50	Experiments on the global buckling and collapse of built-up cold-formed steel columns. Journal of Constructional Steel Research, 2018, 144, 65-80.	1.7	98
51	Modal buckling behaviour of long polygonal tubes in uniform torsion using the generalised c FSM. Thin-Walled Structures, 2018, 128, 141-151.	2.7	8
52	Cyclic performance of steel storage rack beam-to-upright bolted connections. Journal of Constructional Steel Research, 2018, 148, 28-48.	1.7	18
53	Hysteretic behaviour of steel storage rack beam-to-upright boltless connections. Journal of Constructional Steel Research, 2018, 144, 81-105.	1.7	13
54	Elastic buckling of columns with a discrete elastic torsional restraint. Thin-Walled Structures, 2018, 129, 502-511.	2.7	7

#	Article	IF	CITATIONS
55	Full slenderness range DSM approach for stainless steel hollow cross-sections. Journal of Constructional Steel Research, 2017, 133, 156-166.	1.7	32
56	The generalised constrained finite strip method for thin-walled members in shear. Thin-Walled Structures, 2017, 117, 294-302.	2.7	22
57	Perforated Cold-Formed Steel Members in Compression. I: Parametric Studies. Journal of Structural Engineering, 2017, 143, .	1.7	10
58	Perforated Cold-Formed Steel Members in Compression. II: Design. Journal of Structural Engineering, 2017, 143, .	1.7	11
59	A combined meshfree/finite strip method for analysis of plates with perforations and cracks. Thin-Walled Structures, 2017, 111, 113-125.	2.7	7
60	07.13: On extending the direct strength method to the design of coldâ€formed steel builtâ€up columns. Ce/Papers, 2017, 1, 1600-1608.	0.1	1
61	08.17: Experimental behaviour of high-strength thin-walled concrete filled steel tubular stub columns. Ce/Papers, 2017, 1, 1976-1985.	0.1	3
62	07.20: Application of the compound strip method in buckling analysis of coldâ€formed steel builtâ€up sections. Ce/Papers, 2017, 1, 1667-1676.	0.1	2
63	Modelling and probabilistic study of the residual stress of cold-formed hollow steel sections. Engineering Structures, 2017, 150, 986-995.	2.6	19
64	Full slenderness range DSM approach for stainless steel hollow cross-section columns and beam-columns. Journal of Constructional Steel Research, 2017, 138, 246-263.	1.7	24
65	00.01: Future challenges and developments in the design of steel structures – an Australian perspective. Ce/Papers, 2017, 1, 81-94.	0.1	3
66	Experimental Behavior of Concrete-Filled Stainless Steel Tubular Columns under Cyclic Lateral Loading. Journal of Structural Engineering, 2017, 143, .	1.7	36
67	07.17: Design methods for drive-in steel storage racks. Ce/Papers, 2017, 1, 1637-1646.	0.1	0
68	11.34: Cross-aisle seismic behaviour of drive-in rack systems. Ce/Papers, 2017, 1, 3109-3118.	0.1	0
69	11.56: Test rig for seismic experiments of driveâ€in racks. Ce/Papers, 2017, 1, 3295-3304.	0.1	0
70	05.29: Interaction curves for local and distortional buckling of polygonal tubes in combined torsion and axial loading. Ce/Papers, 2017, 1, 1285-1294.	0.1	0
71	Investigation of U-head rotational stiffness in formwork supporting scaffold systems. Engineering Structures, 2017, 136, 1-11.	2.6	6
72	Reliability-Based Load Requirements for Formwork Shores during Concrete Placement. Journal of Structural Engineering, 2016, 142, 04015094.	1.7	8

#	Article	IF	CITATIONS
73	System-based design of planar steel frames, I: Reliability framework. Journal of Constructional Steel Research, 2016, 123, 135-143.	1.7	55
74	Closure to "Reliability-Based Load Requirements for Formwork Shores during Concrete Placement―by Hao Zhang, James Reynolds, Kim J. R. Rasmussen, and Bruce R. Ellingwood. Journal of Structural Engineering, 2016, 142, 07016007.	1.7	0
75	Finite element (FE) modelling of storage rack frames. Journal of Constructional Steel Research, 2016, 126, 1-14.	1.7	27
76	Modeling geometric imperfections for reticulated shell structures using random field theory. Engineering Structures, 2016, 126, 481-489.	2.6	43
77	Stress-Strain Model for Ferritic Stainless Steels. Journal of Materials in Civil Engineering, 2016, 28, .	1.3	22
78	Systems Reliability for 3D Steel Frames Subject to Gravity Loads. Structures, 2016, 8, 170-182.	1.7	12
79	System-based design of planar steel frames, II: Reliability results and design recommendations. Journal of Constructional Steel Research, 2016, 123, 154-161.	1.7	24
80	Ultra-light gauge steel storage rack frames. Part 1: Experimental investigations. Journal of Constructional Steel Research, 2016, 124, 57-76.	1.7	5
81	Experimental investigation of locally and distortionally buckled portal frames. Journal of Constructional Steel Research, 2016, 122, 571-583.	1.7	21
82	Ultra-light gauge steel storage rack frames. Part 2 – Analysis and design considerations of second order effects. Journal of Constructional Steel Research, 2016, 124, 37-46.	1.7	5
83	Analytical behavior of concrete filled double steel tubular (CFDST) members under lateral impact. Thin-Walled Structures, 2016, 101, 129-140.	2.7	69
84	Beam-element-based analysis of locally and/or distortionally buckled members: Theory. Thin-Walled Structures, 2016, 98, 285-292.	2.7	17
85	Second-order effects in locally and/or distortionally buckled frames and design based on beam element analysis. Journal of Constructional Steel Research, 2016, 122, 57-69.	1.7	7
86	A rational procedure for modelling imperfections in advanced analysis of frames with locally unstable members. Thin-Walled Structures, 2015, 96, 183-201.	2.7	6
87	Localised geometric imperfection analysis and modelling using the wavelet transform. Thin-Walled Structures, 2015, 96, 202-219.	2.7	2
88	Structural modeling of cold-formed steel portal frames. Structures, 2015, 4, 58-68.	1.7	14
89	Experimental behavior of concrete filled double steel tubular (CFDST) members under low velocity drop weight impact. Thin-Walled Structures, 2015, 97, 279-295.	2.7	60
90	Beam-element-based analysis of locally and/or distortionally buckled members: Application. Thin-Walled Structures, 2015, 95, 127-137.	2.7	8

#	Article	IF	CITATIONS
91	Local–Global Interaction Buckling of Stainless Steel I-Beams. I: Experimental Investigation. Journal of Structural Engineering, 2015, 141, .	1.7	23
92	Local–Global Interaction Buckling of Stainless Steel I-Beams. II: Numerical Study and Design. Journal of Structural Engineering, 2015, 141, .	1.7	21
93	Wavelet density-based adaptive importance sampling method. Structural Safety, 2015, 52, 161-169.	2.8	27
94	Behavior and Design of Concentrically Loaded T-Section Steel Columns. Journal of Structural Engineering, 2014, 140, .	1.7	4
95	Tests of coldâ€formed steel portal frames with slender sections. Steel Construction, 2014, 7, 199-203.	0.4	8
96	A model for warping transmission through joints of steel frames. Thin-Walled Structures, 2014, 82, 1-12.	2.7	8
97	Behaviour of high-strength concrete filled steel tubes under transverse impact loading. Journal of Constructional Steel Research, 2014, 92, 25-39.	1.7	168
98	Influence of pallets on the behaviour and design of steel drive-in racks. Journal of Constructional Steel Research, 2014, 97, 10-23.	1.7	8
99	Flexural–torsional buckling of ultra light-gauge steel storage rack uprights. Thin-Walled Structures, 2014, 81, 159-174.	2.7	18
100	GBT-based structural analysis of elastic–plastic thin-walled members. Computers and Structures, 2014, 136, 1-23.	2.4	45
101	Distortional–global interaction buckling of stainless steel C-beams: Part I — Experimental investigation. Journal of Constructional Steel Research, 2014, 96, 127-139.	1.7	56
102	Distortional–global interaction buckling of stainless steel C-beams: Part II — Numerical study and design. Journal of Constructional Steel Research, 2014, 96, 40-53.	1.7	55
103	Reliabilities of Steel Structural Systems Designed by Inelastic Analysis. , 2014, , .		0
104	System reliabilities in steel structural frame design by inelastic analysis. Engineering Structures, 2014, 81, 341-348.	2.6	38
105	Probabilistic modelling of residual stress in advanced analysis of steel structures. Journal of Constructional Steel Research, 2014, 101, 407-414.	1.7	25
106	On the modelling of initial geometric imperfections of steel frames in advanced analysis. Journal of Constructional Steel Research, 2014, 98, 167-177.	1.7	56
107	The behaviour of pin-ended flange elements in compression. Thin-Walled Structures, 2014, 81, 250-257.	2.7	0
108	System reliability considerations for steel design by inelastic analysis. , 2014, , 3517-3522.		0

#	Article	IF	CITATIONS
109	System-based design for steel scaffold structures using advanced analysis. Journal of Constructional Steel Research, 2013, 89, 1-8.	1.7	32
110	Carrying Capacity of Stainless Steel Columns in the Low Slenderness Range. Journal of Structural Engineering, 2013, 139, 1088-1092.	1.7	26
111	Analysis-Based Design Provisions for Steel Storage Racks. Journal of Structural Engineering, 2013, 139, 849-859.	1.7	19
112	Stability of Z-Section Purlins Used as Temporary Struts during Construction. Journal of Structural Engineering, 2013, 139, 04013009.	1.7	5
113	Network Effects on Scientific Collaborations. PLoS ONE, 2013, 8, e57546.	1.1	109
114	Drive-In Steel Storage Racks I: Stiffness Tests and 3D Load-Transfer Mechanisms. Journal of Structural Engineering, 2012, 138, 135-147.	1.7	21
115	Drive-In Steel Storage Racks. II: Reliability-Based Design for Forklift Truck Impact. Journal of Structural Engineering, 2012, 138, 148-156.	1.7	7
116	Inelastic local buckling behaviour of perforated plates and sections under compression. Thin-Walled Structures, 2012, 61, 49-70.	2.7	23
117	Determining the transverse shear stiffness of steel storage rack upright frames. Journal of Constructional Steel Research, 2012, 78, 107-116.	1.7	17
118	Reliability assessment of steel scaffold shoring structures for concrete formwork. Engineering Structures, 2012, 36, 81-89.	2.6	46
119	Trend and efficiency analysis of co-authorship network. Scientometrics, 2012, 90, 687-699.	1.6	117
120	Material and geometric nonlinear isoparametric spline finite strip analysis of perforated thin-walled steel structures—Analytical developments. Thin-Walled Structures, 2011, 49, 1359-1373.	2.7	26
121	Material and geometric nonlinear isoparametric spline finite strip analysis of perforated thin-walled steel structures—Numerical investigations. Thin-Walled Structures, 2011, 49, 1374-1391.	2.7	17
122	Evolutionary dynamics of scientific collaboration networks: multi-levels and cross-time analysis. Scientometrics, 2011, 89, 687-710.	1.6	99
123	Structural modelling of support scaffold systems. Journal of Constructional Steel Research, 2011, 67, 866-875.	1.7	50
124	Determination of the base plate stiffness and strength of steel storage racks. Journal of Constructional Steel Research, 2011, 67, 1031-1041.	1.7	33
125	Recent research on the design and behaviour of drive-in steel storage racking systems. Steel Construction, 2011, 4, 232-241.	0.4	1
126	Determination of accidental forklift truck impact forces on drive-in steel rack structures. Engineering Structures, 2011, 33, 1403-1409.	2.6	15

#	Article	IF	CITATIONS
127	Impact tests and parametric impact studies on drive-in steel storage racks. Engineering Structures, 2011, 33, 1410-1422.	2.6	16
128	Investigation of geometric imperfections and joint stiffness of support scaffold systems. Journal of Constructional Steel Research, 2011, 67, 576-584.	1.7	54
129	ANALYSIS-BASED 2D DESIGN OF STEEL STORAGE RACKS. International Journal of Structural Stability and Dynamics, 2011, 11, 929-947.	1.5	4
130	Bolted moment connections in drive-in and drive-through steel storage racks. Journal of Constructional Steel Research, 2010, 66, 755-766.	1.7	40
131	Probabilistic study of the strength of steel scaffold systems. Structural Safety, 2010, 32, 393-401.	2.8	64
132	Nonlinear buckling optimization of composite structures considering "worst―shape imperfections. International Journal of Solids and Structures, 2010, 47, 3186-3202.	1.3	68
133	Combined Distortional and Overall Flexural-Torsional Buckling of Cold-Formed Stainless Steel Sections: Experimental Investigations. Journal of Structural Engineering, 2010, 136, 354-360.	1.7	67
134	Combined Distortional and Overall Flexural-Torsional Buckling of Cold-Formed Stainless Steel Sections: Design. Journal of Structural Engineering, 2010, 136, 361-369.	1.7	39
135	Experimental Investigation of the Interaction of Local and Overall Buckling of Stainless Steel I-Columns. Journal of Structural Engineering, 2009, 135, 1340-1348.	1.7	85
136	Geometric nonlinear isoparametric spline finite strip analysis of perforated thin-walled structures. Thin-Walled Structures, 2009, 47, 219-232.	2.7	35
137	Full-scale tests on composite steel–concrete beams with steel trapezoidal decking. Journal of Constructional Steel Research, 2009, 65, 1490-1506.	1.7	38
138	Experimental investigation of local-overall interaction buckling of stainless steel lipped channel columns. Journal of Constructional Steel Research, 2009, 65, 1677-1684.	1.7	108
139	A numerical investigation of local–overall interaction buckling of stainless steel lipped channel columns. Journal of Constructional Steel Research, 2009, 65, 1685-1693.	1.7	51
140	Numerical Investigation of the Interaction of Local and Overall Buckling of Stainless Steel I-Columns. Journal of Structural Engineering, 2009, 135, 1349-1356.	1.7	54
141	Isoparametric spline finite strip method for the bending of perforated plates. International Journal for Numerical Methods in Engineering, 2008, 74, 1448-1472.	1.5	8
142	Nonlinear flange curling in wide flange sections. Journal of Constructional Steel Research, 2008, 64, 779-784.	1.7	10
143	The direct strength method for stainless steel compression members. Journal of Constructional Steel Research, 2008, 64, 1231-1238.	1.7	85
144	Elastic buckling analysis of perforated thin-walled structures by the isoparametric spline finite strip method. Thin-Walled Structures, 2008, 46, 165-191.	2.7	41

#	Article	IF	CITATIONS
145	Linear elastic isoparametric spline finite strip analysis of perforated thin-walled structures. Thin-Walled Structures, 2008, 46, 242-260.	2.7	25
146	Compression Strength of Unstiffened Elements in Cold-Reduced High Strength Steel. Journal of Structural Engineering, 2008, 134, 189-197.	1.7	5
147	Behavior of Self-Drilling Screws in Light-Gauge Steel Construction. Journal of Structural Engineering, 2007, 133, 895-898.	1.7	6
148	Inelastic behaviour and design of slender I-sections in minor axis bending. Journal of Constructional Steel Research, 2007, 63, 1-12.	1.7	13
149	Strength of arc-welded T-joints between equal width cold-formed RHS. Journal of Constructional Steel Research, 2007, 63, 571-579.	1.7	12
150	Bifurcation of locally buckled point symmetric columns—Experimental investigations. Thin-Walled Structures, 2006, 44, 1175-1184.	2.7	10
151	Bifurcation of locally buckled point symmetric columns—Analytical developments. Thin-Walled Structures, 2006, 44, 1161-1174.	2.7	3
152	Distortional Buckling of Cold-Formed Stainless Steel Sections: Experimental Investigation. Journal of Structural Engineering, 2006, 132, 497-504.	1.7	69
153	Distortional Buckling of Cold-Formed Stainless Steel Sections: Finite-Element Modeling and Design. Journal of Structural Engineering, 2006, 132, 505-514.	1.7	56
154	Design of Slender Angle Section Beam-Columns by the Direct Strength Method. Journal of Structural Engineering, 2006, 132, 204-211.	1.7	39
155	Measurement and assessment of imperfections in plasma cut-welded H-shaped steel columns. Steel and Composite Structures, 2006, 6, 531-555.	1.3	1
156	Exact and approximate solutions for the flexural buckling of columns with oblique rotational end restraints. Thin-Walled Structures, 2005, 43, 411-426.	2.7	8
157	Flexural–Torsional Buckling of Columns with Oblique Eccentric Restraints. Journal of Structural Engineering, 2005, 131, 1731-1737.	1.7	6
158	Design of Angle Columns with Locally Unstable Legs. Journal of Structural Engineering, 2005, 131, 1553-1560.	1.7	53
159	Finite-Element Analysis of the Flexural Buckling of Columns with Oblique Restraints. Journal of Structural Engineering, 2005, 131, 481-487.	1.7	7
160	Design of Stiffened Elements in Cold-Formed Stainless Steel Sections. Journal of Structural Engineering, 2004, 130, 1764-1771.	1.7	12
161	Compression Tests of Cold-Reduced High Strength Steel Sections. II: Long Columns. Journal of Structural Engineering, 2004, 130, 1782-1789.	1.7	19
162	Design Provisions for Sections Containing Unstiffened Elements with Stress Gradient. Journal of Structural Engineering, 2004, 130, 1620-1628.	1.7	25

#	Article	IF	CITATIONS
163	On the strength of cast iron columns. Journal of Constructional Steel Research, 2004, 60, 1257-1270.	1.7	22
164	Measurement techniques in the testing of thin-walled structural members. Experimental Mechanics, 2003, 43, 32-38.	1.1	18
165	Full-range stress–strain curves for stainless steel alloys. Journal of Constructional Steel Research, 2003, 59, 47-61.	1.7	668
166	Numerical modelling of stainless steel plates in compression. Journal of Constructional Steel Research, 2003, 59, 1345-1362.	1.7	64
167	Strength Curves for Metal Plates in Compression. Journal of Structural Engineering, 2003, 129, 1433-1440.	1.7	19
168	Nonlinear Analysis of Locally Buckled I-Section Steel Beam-Columns. Australian Journal of Structural Engineering, 2002, 3, 171-200.	0.4	3
169	Interaction curves for locally buckled I-section beam-columns. Journal of Constructional Steel Research, 2002, 58, 213-241.	1.7	22
170	The Background of AS/NZS4673:2001 $\hat{a} \in \hat{C}$ Cold-formed Stainless Steel Structures. , 2002, , .		0
171	Selection criteria in the structural use of stainless steel alloys. , 2002, , .		Ο
172	Tests of X- and K-Joints in SHS Stainless Steel Tubes. Journal of Structural Engineering, 2001, 127, 1173-1182.	1.7	47
173	Tests of X- and K-Joints in CHS Stainless Steel Tubes. Journal of Structural Engineering, 2001, 127, 1183-1189.	1.7	34
174	Buckling analysis of thin-walled structures: numerical developments and applications. Structural Control and Health Monitoring, 2000, 2, 359-368.	0.7	4
175	Strength curves for aluminium alloy columns. Engineering Structures, 2000, 22, 1505-1517.	2.6	35
176	Recent research on stainless steel tubular structures. Journal of Constructional Steel Research, 2000, 54, 75-88.	1.7	41
177	Inelastic bifurcation of cold-formed singly symmetric columns. Thin-Walled Structures, 2000, 36, 213-230.	2.7	10
178	Thin-Walled Beam-Columns. II: Proportional Loading Tests. Journal of Structural Engineering, 1999, 125, 1267-1276.	1.7	22
179	Thin-Walled Beam-Columns. I: Sequential Loading and Moment Gradient Tests. Journal of Structural Engineering, 1999, 125, 1257-1266	1.7	8
180	Shift of Effective Centroid of Channel Columns. Journal of Structural Engineering, 1999, 125, 524-531.	1.7	47

#	Article	IF	CITATIONS
181	Behaviour of cold-formed singly symmetric columns. Thin-Walled Structures, 1999, 33, 83-102.	2.7	43
182	A unified approach to column design. Journal of Constructional Steel Research, 1998, 46, 127-128.	1.7	2
183	Design of Lipped Channel Columns. Journal of Structural Engineering, 1998, 124, 140-148.	1.7	86
184	Tests of Fixed-Ended Plain Channel Columns. Journal of Structural Engineering, 1998, 124, 131-139.	1.7	85
185	Section Capacity of Thin-Walled I-Section Beam-Columns. Journal of Structural Engineering, 1998, 124, 351-359.	1.7	25
186	Strength Curves for Metal Columns. Journal of Structural Engineering, 1997, 123, 721-728.	1.7	73
187	Explicit Approach to Design of Stainless Steel Columns. Journal of Structural Engineering, 1997, 123, 857-863.	1.7	23
188	Tests of high strength steel columns. Journal of Constructional Steel Research, 1995, 34, 27-52.	1.7	215
189	The flexural behaviour of fixed-ended channel section columns. Thin-Walled Structures, 1993, 17, 45-63.	2.7	24
190	Plate slenderness limits for high strength steel sections. Journal of Constructional Steel Research, 1992, 23, 73-96.	1.7	208
191	Recent developments in the buckling and nonlinear analysis of thin-walled structural members. Thin-Walled Structures, 1990, 9, 309-338.	2.7	30
192	Design of columns fabricated from slender plates. Journal of Constructional Steel Research, 1990, 17, 283-303.	1.7	3
193	Compression Tests of Welded Channel Section Columns. Journal of Structural Engineering, 1989, 115, 789-808.	1.7	21
194	Deformations and residual stresses induced in channel section columns by presetting and welding. Journal of Constructional Steel Research, 1988, 11, 175-204.	1.7	14
195	Modelling Geometric Imperfections of Spatial Latticed Structures Considering Correlations of Node Imperfections. Applied Mechanics and Materials, 0, 553, 576-581.	0.2	3
196	FE Modelling of Storage Rack Frames. Applied Mechanics and Materials, 0, 553, 631-636.	0.2	0