Giovanni D'Orazio

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6534854/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Potentiality of miniaturized techniques for the analysis of drugs of abuse. Electrophoresis, 2022, 43, 190-200.	1.3	7
2	Supercritical fluid chromatography for vitamin and carotenoid analysis: an update covering 2011-2021. Journal of Chromatography Open, 2022, 2, 100027.	0.8	6
3	Enantioseparation of selected chiral agrochemicals by using nano-liquid chromatography and capillary electrochromatography with amylose tris(3‑chloro-5-methylphenylcarbamate) covalently immobilized onto silica. Journal of Chromatography A, 2022, 1673, 463128.	1.8	3
4	Chiral separation and analysis of antifungal drugs by chromatographic and electromigration techniques: Results achieved in 2010–2020. Reviews in Analytical Chemistry, 2021, 40, 220-252.	1.5	9
5	Dispersive liquid-liquid microextraction using a low transition temperature mixture and liquid chromatography-mass spectrometry analysis of pesticides in urine samples. Journal of Chromatography A, 2021, 1642, 462036.	1.8	29
6	Application of a Low Transition Temperature Mixture for the Dispersive Liquid–Liquid Microextraction of Illicit Drugs from Urine Samples. Molecules, 2021, 26, 5222.	1.7	13
7	Chiral Nano-Liquid Chromatography and Dispersive Liquid-Liquid Microextraction Applied to the Analysis of Antifungal Drugs in Milk. Molecules, 2021, 26, 7094.	1.7	5
8	Further study on enantiomer resolving ability of amylose tris(3-chloro-5-methylphenylcarbamate) covalently immobilized onto silica in nano-liquid chromatography and capillary electrochromatography. Journal of Chromatography A, 2020, 1623, 461213.	1.8	10
9	Capillary electrophoresis-mass spectrometry. , 2020, , 413-447.		3
10	Nanoâ€liquid chromatography combined with a sustainable microextraction based on natural deep eutectic solvents for analysis of phthalate esters. Electrophoresis, 2020, 41, 1768-1775.	1.3	13
11	Nano-liquid chromatography for enantiomers separation of baclofen by using vancomycin silica stationary phase. Journal of Chromatography A, 2019, 1605, 360358.	1.8	15
12	Comparative study on enantiomer resolving ability of amylose tris(3-chloro-5-methylphenylcarbamate) covalently immobilized onto silica in nano-liquid chromatography and capillary electrochromatography. Journal of Chromatography A, 2019, 1606, 460425.	1.8	19
13	Analysis of Enantiomers in Products of Food Interest. Molecules, 2019, 24, 1119.	1.7	42
14	Enantioseparation of tryptophan and its unnatural derivatives by nano‣C on CSPâ€ŧeicoplanin silica based. Electrophoresis, 2019, 40, 1966-1971.	1.3	5
15	An attempt for fast separation of enantiomers in nanoâ€liquid chromatography and capillary electrochromatography. Electrophoresis, 2017, 38, 1932-1938.	1.3	22
16	Chiral separations in food analysis. TrAC - Trends in Analytical Chemistry, 2017, 96, 151-171.	5.8	73
17	Advanced analytical techniques for fat-soluble vitamin analysis. TrAC - Trends in Analytical Chemistry, 2017, 87, 82-97.	5.8	72
18	Enantiomeric separation of some chiral analytes using amylose 3,5-dimethylphenylcarbamate covalently immobilized on silica by nano-liquid chromatography and capillary electrochromatography. Journal of Chromatography A, 2017, 1520, 127-134.	1.8	20

#	Article	IF	CITATIONS
19	Nano-liquid chromatography. , 2017, , 637-695.		11
20	Nano-Liquid Chromatographic Separations. , 2017, , 309-363.		3
21	Determination of estrogenic compounds in milk and yogurt samples by hollow-fibre liquid-phase microextraction-gas chromatography-triple quadrupole mass spectrometry. Analytical and Bioanalytical Chemistry, 2016, 408, 7447-7459.	1.9	21
22	Capillary electrochromatography and nanoâ€liquid chromatography coupled to nanoâ€electrospray ionization interface for the separation and identification of estrogenic compounds. Electrophoresis, 2016, 37, 356-362.	1.3	13
23	Capillary electrochromatography in food analysis. TrAC - Trends in Analytical Chemistry, 2016, 82, 250-267.	5.8	55
24	Capillary electrochromatographyâ€mass spectrometry for the determination of 5â€nitroimidazole antibiotics in urine samples. Electrophoresis, 2015, 36, 2606-2615.	1.3	14
25	Determination of key flavonoid aglycones by means of nano‣C for the analysis of dietary supplements and food matrices. Electrophoresis, 2015, 36, 1073-1081.	1.3	14
26	Evaluation of the combination of a dispersive liquid–liquid microextraction method with micellar electrokinetic chromatography coupled to mass spectrometry for the determination of estrogenic compounds in milk and yogurt. Electrophoresis, 2015, 36, 615-625.	1.3	41
27	Pressurized nano-liquid–junction interface for coupling capillary electrochromatography and nano-liquid chromatography with mass spectrometry. Journal of Chromatography A, 2013, 1317, 67-76.	1.8	23
28	Combination of two different stationary phases for on-line pre-concentration and separation of basic drugs by using nano-liquid chromatography. Journal of Chromatography A, 2013, 1285, 118-123.	1.8	17
29	Recent Developments in High-Performance LiquidÂChromatography. , 2012, , 1-32.		Ο
30	Simultaneous analysis of cocaine and its metabolites in urine by capillary electrophoresis–electrospray mass spectrometry using a pressurized liquid junction nanoflow interface. Electrophoresis, 2012, 33, 653-660.	1.3	27
31	Analysis of synthetic cannabinoids in herbal blends by means of nano-liquid chromatography. Journal of Pharmaceutical and Biomedical Analysis, 2012, 71, 45-53.	1.4	40
32	Nano-liquid chromatography coupled with mass spectrometry: Separation of sulfonamides employing non-porous core–shell particles. Journal of Chromatography A, 2012, 1255, 277-285.	1.8	55
33	Comparative performance of capillary columns made with totally porous and core–shell particles coated with a polysaccharide-based chiral selector in nano-liquid chromatography and capillary electrochromatography. Journal of Chromatography A, 2012, 1269, 136-142.	1.8	76
34	Nanoâ€liquid chromatography and capillary electrochromatography hyphenated with mass spectrometry for tryptic digest protein analysis: A comparison. Electrophoresis, 2012, 33, 2553-2560.	1.3	20
35	Fast-liquid chromatography using columns of different internal diameters packed with sub-2?m silica particles. Journal of Chromatography A, 2012, 1228, 213-220.	1.8	31
36	C18 silica packed capillary columns with monolithic frits prepared with UV light emitting diode: Usefulness in nano-liquid chromatography and capillary electrochromatography. Journal of Chromatography A, 2012, 1232, 176-182.	1.8	30

GIOVANNI D'ORAZIO

#	Article	IF	CITATIONS
37	Multi-walled carbon nanotubes–dispersive solid-phase extraction combined with nano-liquid chromatography for the analysis of pesticides in water samples. Analytical and Bioanalytical Chemistry, 2011, 400, 1113-1123.	1.9	81
38	Analysis of anthocyanins in commercial fruit juices by using nanoâ€liquid chromatographyâ€electrosprayâ€mass spectrometry and highâ€performance liquid chromatography with UVâ€vis detector. Journal of Separation Science, 2011, 34, 150-159.	1.3	59
39	Advances in the enantioseparation of βâ€blocker drugs by capillary electromigration techniques. Electrophoresis, 2011, 32, 2602-2628.	1.3	31
40	Polyethylenimine-modified metal oxides for fabrication of packed capillary columns for capillary electrochromatography and capillary liquid chromatography. Journal of Chromatography A, 2011, 1218, 5020-5029.	1.8	8
41	Investigation of polar stationary phases for the separation of sympathomimetic drugs with nano-liquid chromatography in hydrophilic interaction liquid chromatography mode. Analytica Chimica Acta, 2011, 685, 103-110.	2.6	38
42	Analysis of hesperetin enantiomers in human urine after ingestion of blood orange juice by using nano-liquid chromatography. Journal of Pharmaceutical and Biomedical Analysis, 2010, 51, 225-229.	1.4	40
43	CEC-ESI ion trap MS of multiple drugs of abuse. Electrophoresis, 2010, 31, 1256-1263.	1.3	31
44	Analysis of Aloeâ€based phytotherapeutic products by using nanoâ€LCâ€MS. Journal of Separation Science, 2010, 33, 2663-2670.	1.3	41
45	Optical isomer separation of flavanones and flavanone glycosides by nano-liquid chromatography using a phenyl-carbamate-propyl-l ² -cyclodextrin chiral stationary phase. Journal of Chromatography A, 2010, 1217, 1175-1182.	1.8	50
46	Enantioseparations on amylose tris(5-chloro-2-methylphenylcarbamate) in nano-liquid chromatography and capillary electrochromatography. Journal of Chromatography A, 2010, 1217, 1166-1174.	1.8	48
47	Coupling capillary electrochromatography with mass spectrometry by using a liquid-junction nano-spray interface. Journal of Chromatography A, 2010, 1217, 4079-4086.	1.8	35
48	Capillary electrochromatographic separation of illicit drugs employing a cyano stationary phase. Journal of Chromatography A, 2009, 1216, 3652-3659.	1.8	16
49	Separation of organophosphorus pesticides by using nano-liquid chromatography. Journal of Chromatography A, 2009, 1216, 3970-3976.	1.8	61
50	Enantiomeric separation by using nanoâ€liquid chromatography with onâ€column focusing. Journal of Separation Science, 2008, 31, 2567-2571.	1.3	19
51	Analysis of phenolic compounds in extra virgin olive oil by using reversedâ€phase capillary electrochromatography. Electrophoresis, 2008, 29, 1643-1650.	1.3	41
52	Enantioseparations with cellulose tris(3-chloro-4-methylphenylcarbamate) in nano-liquid chromatography and capillary electrochromatographyâ~†. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2008, 875, 296-303.	1.2	44
53	Chiral nano-liquid chromatography–mass spectrometry applied to amino acids analysis for orange juice profiling. Food Chemistry, 2008, 108, 1114-1121.	4.2	51
54	CEC separation of insect oostatic peptides using a strong-cation-exchange stationary phase. Electrophoresis, 2007, 28, 1689-1695.	1.3	11

GIOVANNI D'ORAZIO

#	Article	IF	CITATIONS
55	Enantioselective separation of the novel antidepressant mirtazapine and its main metabolites by CEC. Electrophoresis, 2007, 28, 2717-2725.	1.3	32
56	Analysis of aromatic and terpenic constituents of pepper extracts by capillary electrochromatography. Journal of Separation Science, 2007, 30, 612-619.	1.3	37
57	Separation of basic compounds of pharmaceutical interest by using nano-liquid chromatography coupled with mass spectrometry. Journal of Chromatography A, 2007, 1150, 252-258.	1.8	42
58	Nano-liquid chromatography analysis of dansylated biogenic amines in wines. Journal of Chromatography A, 2007, 1147, 192-199.	1.8	56
59	Low- and high-resolution nuclear magnetic resonance (NMR) characterisation of hyaluronan-based native and sulfated hydrogels. Carbohydrate Research, 2006, 341, 1848-1858.	1.1	28
60	Use of teicoplanin stationary phase for the enantiomeric resolution of atenolol in human urine by nano-liquid chromatography–mass spectrometry. Journal of Pharmaceutical and Biomedical Analysis, 2006, 40, 539-544.	1.4	20
61	Enantiomeric separation of some demethylated analogues of clofibric acid by capillary zone electrophoresis and nano-liquid chromatography. Electrophoresis, 2006, 27, 1227-1236.	1.3	17
62	On-line CE-MS using pressurized liquid junction nanoflow electrospray interface and surface-coated capillaries. Electrophoresis, 2006, 27, 4666-4673.	1.3	49
63	Use oftert-butylbenzoylated tartardiamide chiral stationary phase for the enantiomeric resolution of acidic compounds by nano-liquid chromatography. Journal of Separation Science, 2006, 29, 1423-1431.	1.3	16
64	Rapid assay of vitamin?E in vegetable oils by reversed-phase capillary electrochromatography. Electrophoresis, 2005, 26, 798-803.	1.3	45
65	Use of nano-liquid chromatography for the analysis of glycyrrhizin and glycyrrhetic acid in licorice roots and candies. Journal of Separation Science, 2005, 28, 982-986.	1.3	13
66	Enantiomeric separation of mirtazapine and its metabolites by nano-liquid chromatography with UV-absorption and mass spectrometric detection. Journal of Separation Science, 2005, 28, 1719-1728.	1.3	31
67	Separation of tocopherols by nano-liquid chromatography. Journal of Pharmaceutical and Biomedical Analysis, 2004, 35, 331-337.	1.4	37
68	Enantiomeric separation of chlorophenoxy acid herbicides by nano liquid chromatography-UV detection on a vancomycin-based chiral stationary phase. Journal of Separation Science, 2004, 27, 1303-1308.	1.3	25
69	Analysis of ketorolac and its related impurities by capillary electrochromatography. Journal of Chromatography A, 2004, 1044, 295-303.	1.8	28
70	Use of a Hepta-Tyr antibiotic modified silica stationary phase for the enantiomeric resolution of D,L-loxiglumide by electrochromatography and nano-liquid chromatography. Journal of Chromatography A, 2004, 1051, 247-252.	1.8	25
71	Use of a Hepta-Tyr antibiotic modified silica stationary phase for the enantiomeric resolution of d,l-loxiglumide by electrochromatography and nano-liquid chromatography. Journal of Chromatography A, 2004, 1051, 247-252.	1.8	2