Maria Pilar Valles

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6534536/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Bread Wheat Doubled Haploid Production by Anther Culture. Methods in Molecular Biology, 2021, 2287, 227-244.	0.9	4
2	Chromatin dynamics during interphase and cell division: similarities and differences between model and crop plants. Journal of Experimental Botany, 2020, 71, 5205-5222.	4.8	32
3	Trichostatin A Affects Developmental Reprogramming of Bread Wheat Microspores towards an Embryogenic Route. Plants, 2020, 9, 1442.	3.5	15
4	Doubled haploid production from Spanish onion (Allium cepa L.) germplasm: embryogenesis induction, plant regeneration and chromosome doubling. Frontiers in Plant Science, 2015, 6, 384.	3.6	33
5	Effect of ovary induction on bread wheat anther culture: ovary genotype and developmental stage, and candidate gene association. Frontiers in Plant Science, 2015, 6, 402.	3.6	25
6	Effects of n-butanol on barley microspore embryogenesis. Plant Cell, Tissue and Organ Culture, 2014, 117, 411-418.	2.3	13
7	Changes in gene expression patterns associated with microspore embryogenesis in hexaploid triticale (Ă—Triticosecale Wittm.). Plant Cell, Tissue and Organ Culture, 2014, 116, 261-267.	2.3	22
8	Microspore embryogenesis in wheat: new marker genes for early, middle and late stages of embryo development. Plant Reproduction, 2013, 26, 287-296.	2.2	29
9	An Improved Consensus Linkage Map of Barley Based on Flow-Sorted Chromosomes and Single Nucleotide Polymorphism Markers. Plant Genome, 2011, 4, 238-249.	2.8	150
10	Analysis of Diversity in Chinese Cultivated Barley with Simple Sequence Repeats: Differences Between Eco-Geographic Populations. Biochemical Genetics, 2010, 48, 44-56.	1.7	11
11	Microspore embryogenesis: assignment of genes to embryo formation and green vs. albino plant production. Functional and Integrative Genomics, 2009, 9, 311-323.	3.5	37
12	Chromosome Doubling in Monocots. , 2009, , 329-338.		30
13	Expression Profiles in Barley Microspore Embryogenesis. , 2009, , 127-134.		6
14	Identification and validation of QTLs for green plant percentage in barley (Hordeum vulgare L.) anther culture. Molecular Breeding, 2008, 22, 119-129.	2.1	31
15	Zinc sulphate improved microspore embryogenesis in barley. Plant Cell, Tissue and Organ Culture, 2008, 93, 295-301.	2.3	19
16	Effects of colchicine on anther and microspore culture of bread wheat (Triticum aestivum L.). Plant Cell, Tissue and Organ Culture, 2007, 91, 225-234.	2.3	52
17	Genetic markers for doubled haploid response in barley. Euphytica, 2007, 158, 287-294.	1.2	33
18	Transcriptome analysis of barley anthers: effect of mannitol treatment on microspore embryogenesis. Physiologia Plantarum, 2006, 127, 551-560.	5.2	37

MARIA PILAR VALLES

#	Article	IF	CITATIONS
19	Influence of Fe concentration in the medium on multicellular pollen grains and haploid plants induced by mannitol pretreatment in barley (Hordeum vulgare L.). Protoplasma, 2006, 228, 101-106.	2.1	2
20	Production of doubled haploids in durum wheat (Triticum turgidum L.) through isolated microspore culture. Plant Cell Reports, 2006, 25, 257-264.	5.6	64
21	Segregation distortion for agronomic traits in doubled haploid lines of barley. Plant Breeding, 2005, 124, 546-550.	1.9	10
22	Cytological and ultrastructural changes induced in anther and isolated-microspore cultures in barley: Fe deposits in isolated-microspore cultures. Journal of Structural Biology, 2005, 149, 170-181.	2.8	19
23	Efficient production of androgenic doubled-haploid mutants in barley by the application of sodium azide to anther and microspore cultures. Plant Cell Reports, 2001, 20, 105-111.	5.6	50
24	Low responsiveness of six-rowed genotypes to androgenesis in barley does not have a pleiotropic basis. Genome, 2001, 44, 936-940.	2.0	4
25	Title is missing!. Euphytica, 2000, 113, 1-8.	1.2	54
26	Desiccated doubled-haploid embryos obtained from microspore culture of barley cv. Igri. Plant Cell Reports, 1999, 18, 924-928.	5.6	7
27	Genetic diversity of barley cultivars grown in Spain, estimated by RFLP, similarity and coancestry coefficients. Plant Breeding, 1998, 117, 429-435.	1.9	20
28	Asymmetric somatic hybridization between tall fescue (Festuca arundinacea Schreb.) and irradiated Italian ryegrass (Lolium multiflorum Lam.) protoplasts. Theoretical and Applied Genetics, 1994, 88, 509-519.	3.6	36
29	Fertile plant regeneration from protoplasts of meadow fescue (Festuca pratensis Huds.). Plant Cell Reports, 1993, 12, 95-100.	5.6	38
30	Nuclease sensitivity of a maize HRGP gene in chromatin and in naked DNA. Plant Science, 1991, 78, 225-230.	3.6	7
31	Expression of genes for cell-wall proteins in dividing and wounded tissues ofZea mays L Planta, 1990, 180, 524-529.	3.2	67
32	Expression of a Maize Cell Wall Hydroxyproline-Rich Glycoprotein Gene in Early Leaf and Root Vascular Differentiation. Plant Cell, 1990, 2, 785.	6.6	21