Soumendra Nath Kuiry

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/653416/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Impact of urban sprawl on future flooding in Chennai city, India. Journal of Hydrology, 2019, 574, 486-496.	2.3	72
2	Coupled 1D–Quasi-2D Flood Inundation Model with Unstructured Grids. Journal of Hydraulic Engineering, 2010, 136, 493-506.	0.7	51
3	Impact assessment of sea-level rise and hazardous storms on coasts and estuaries using integrated processes model. Ocean Engineering, 2013, 71, 74-95.	1.9	38
4	Finite Volume Model for Shallow Water Equations with Improved Treatment of Source Terms. Journal of Hydraulic Engineering, 2008, 134, 231-242.	0.7	30
5	Assessing the accuracy of high-resolution topographic data generated using freely available packages based on SfM-MVS approach. Measurement: Journal of the International Measurement Confederation, 2018, 124, 338-350.	2.5	17
6	Numerical simulations of morphological changes in barrier islands induced by storm surges and waves using a supercritical flow model. Frontiers of Structural and Civil Engineering, 2014, 8, 57-68.	1.2	16
7	Modelling coastal barrier breaching flows with well-balanced shock-capturing technique. Computers and Fluids, 2010, 39, 2051-2068.	1.3	14
8	Investigation of Role of Retention Storage in Tanks (Small Water Bodies) on Future Urban Flooding: A Case Study of Chennai City, India. Water (Switzerland), 2020, 12, 2875.	1.2	11
9	Explicit Expression of Weighting Factor for Improved Estimation of Numerical Flux in Local Inertial Models. Water Resources Research, 2020, 56, e2020WR027357.	1.7	10
10	Local-inertial shallow water model on unstructured triangular grids. Advances in Water Resources, 2021, 152, 103930.	1.7	9
11	A high-resolution shallow water model using unstructured quadrilateral grids. Computers and Fluids, 2012, 68, 16-28.	1.3	6
12	Simulation of Storm Surge in the Mississippi Gulf Coast Using an Integrated Coastal Processes Model. , 2012, , .		5
13	A one-dimensional shock-capturing model for long wave run-up on sloping beaches. ISH Journal of Hydraulic Engineering, 2012, 18, 65-79.	1.1	5
14	A hybrid finite-volume/finite-difference-based one-dimensional Boussinesq model for waves attenuated by vegetation. Journal of Ocean Engineering and Marine Energy, 2016, 2, 19-34.	0.9	5
15	APPLICATION OF THE 1D-QUASI 2D MODEL TINFLOOD FOR FLOODPLAIN INUNDATION PREDICTION OF THE RIVER THAMES. ISH Journal of Hydraulic Engineering, 2011, 17, 98-110.	1.1	4
16	Experimental and numerical study of flood in a river-network-floodplain set-up. Journal of Hydraulic Research/De Recherches Hydrauliques, 2020, 58, 938-956.	0.7	4
17	Experimental and numerical study of flood dynamics in a river-network-floodplain set-up. Journal of Hydroinformatics, 2020, 22, 793-814.	1.1	4
18	Applications of the single-port linear Thevenin theorem for focused and efficient analysis of a sub-network connected with a large existing pipe network. Urban Water Journal, 2021, 18, 681-698.	1.0	4

#	Article	IF	CITATIONS
19	Closure to "Finite Volume Model for Shallow Water Equations with Improved Treatment of Source Terms―by Soumendra Nath Kuiry, Kiran Pramanik, and Dhrubajyoti Sen. Journal of Hydraulic Engineering, 2009, 135, 1017-1017.	0.7	2
20	A Hybrid Finite-Volume/Finite-Difference Scheme for One-Dimensional Boussinesq Equations to Simulate Wave Attenuation Due to Vegetation. , 2011, , .		2
21	Improved accuracy of storm surge simulations by incorporating changing alongâ€track parameters. International Journal of Climatology, 2022, 42, 6908-6926.	1.5	2
22	A Two-Dimensional Finite Volume Model for Tide and Storm Surge Predictions. , 2012, , .		1
23	Application of Thevenin Theorem for Model Reduction and Analysis of Large Water Distribution Networks. , 2020, , .		1
24	Demonstration of structure-from-motion (SfM) and multi-view stereo (MVS) close range photogrammetry technique for scour hole analysis. Sadhana - Academy Proceedings in Engineering Sciences, 2021, 46, 1.	0.8	1
25	A Process-Based Unsteady Model for Wave-Current-Morphodynamic Changes in Two-Dimensions. , 2009, , .		0
26	Optimal Flood Control in Alluvial Channel Using Adjoint Sensitivity Analysis. , 2010, , .		0
27	Optimal Control of Flood Waters with Sediment Transport in Watershed. , 2012, , .		0
28	Investigation of Morphological Analysis of the Adyar River in India for Regaining Its Health. , 2022, , .		0
29	Applications of Electrical Simulators for Analyzing Hydraulic Pipe Networks. , 2022, , .		0