Christina Karavasili

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6534048/publications.pdf

Version: 2024-02-01

46 papers

1,348 citations

394421 19 h-index 36 g-index

48 all docs 48 docs citations

48 times ranked

1795 citing authors

#	Article	IF	CITATIONS
1	Exploring the Role of Self-Nanoemulsifying Systems in Drug Delivery: Challenges, Issues, Applications and Recent Advances. Current Drug Delivery, 2023, 20, 1241-1261.	1.6	6
2	Semi-solid extrusion 3D printing of starch-based soft dosage forms for the treatment of paediatric latent tuberculosis infection. Journal of Pharmacy and Pharmacology, 2022, 74, 1498-1506.	2.4	12
3	NGIWY-Amide: A Bioinspired Ultrashort Self-Assembled Peptide Gelator for Local Drug Delivery Applications. Pharmaceutics, 2022, 14, 133.	4.5	7
4	Silk sericin/PLGA electrospun scaffolds with anti-inflammatory drug-eluting properties for periodontal tissue engineering. Materials Science and Engineering C, 2022, 133, 112723.	7.3	13
5	Development and validation of HPLC-DAD and LC-(ESI)/MS methods for the determination of sulfasalazine, mesalazine and hydrocortisone 21-acetate in tablets and rectal suppositories: In vitro and ex vivo permeability studies. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2022, 1198, 123246.	2.3	5
6	Analytical quality-by-design optimization of UHPLC method for the analysis of octreotide release from a peptide-based hydrogel in-vitro. Journal of Pharmaceutical and Biomedical Analysis, 2022, 214, 114699.	2.8	5
7	In Situ Gelling Electrospun Ocular Films Sustain the Intraocular Pressure-Lowering Effect of Timolol Maleate: In Vitro, Ex Vivo, and Pharmacodynamic Assessment. Molecular Pharmaceutics, 2022, 19, 274-286.	4.6	12
8	Electrospun Nanofiber Films Suppress Inflammation <i>In Vitro</i> and Eradicate Endodontic Bacterial Infection in an <i>E. faecalis</i> Infected <i>Ex Vivo</i> Human Tooth Culture Model. ACS Biomaterials Science and Engineering, 2022, 8, 2096-2110.	5.2	4
9	Cereal-Based 3D Printed Dosage Forms for Drug Administration During Breakfast in Pediatric Patients within a Hospital Setting. Journal of Pharmaceutical Sciences, 2022, 111, 2562-2570.	3.3	14
10	Development of oil-based gels as versatile drug delivery systems for pediatric applications. Science Advances, 2022, 8, .	10.3	19
11	Development and Validation of an HPLC-UV Method for the Dissolution Studies of 3D-Printed Paracetamol Formulations in Milk-Containing Simulated Gastrointestinal Media. Pharmaceuticals, 2022, 15, 755.	3.8	1
12	Quality control evaluation of paediatric chocolate-based dosage forms: 3D printing vs mold-casting method. International Journal of Pharmaceutics, 2022, 624, 121991.	5.2	13
13	Patent landscape of pediatric-friendly oral dosage forms and administration devices. Expert Opinion on Therapeutic Patents, 2021, 31, 663-685.	5.0	13
14	Survival and Proliferation under Severely Hypoxic Microenvironments Using Cell-Laden Oxygenating Hydrogels. Journal of Functional Biomaterials, 2021, 12, 30.	4.4	7
15	Self-assembling peptides as vectors for local drug delivery and tissue engineering applications. Advanced Drug Delivery Reviews, 2021, 174, 387-405.	13.7	36
16	Mucosal drug delivery and 3D printing technologies: A focus on special patient populations. Advanced Drug Delivery Reviews, 2021, 176, 113858.	13.7	36
17	3D-Printed Scaffolds from Alginate/Methyl Cellulose/Trimethyl Chitosan/Silicate Glasses for Bone Tissue Engineering. Applied Sciences (Switzerland), 2021, 11, 8677.	2.5	12
18	Multi-Organs-on-Chips for Testing Small-Molecule Drugs: Challenges and Perspectives. Pharmaceutics, 2021, 13, 1657.	4.5	14

#	Article	IF	CITATIONS
19	Self-Nanoemulsifying Drug Delivery Systems (SNEDDS) Containing Rice Bran Oil for Enhanced Fenofibrate Oral Delivery: In Vitro Digestion, Ex Vivo Permeability, and In Vivo Bioavailability Studies. AAPS PharmSciTech, 2020, 21, 208.	3.3	12
20	Electrospun Orodispersible Films of Isoniazid for Pediatric Tuberculosis Treatment. Pharmaceutics, 2020, 12, 470.	4.5	37
21	Physico-mechanical and finite element analysis evaluation of 3D printable alginate-methylcellulose inks for wound healing applications. Carbohydrate Polymers, 2020, 247, 116666.	10.2	44
22	Partial Least Square Model (PLS) as a Tool to Predict the Diffusion of Steroids Across Artificial Membranes. Molecules, 2020, 25, 1387.	3.8	9
23	Ocular Co-Delivery of Timolol and Brimonidine from a Self-Assembling Peptide Hydrogel for the Treatment of Glaucoma: In Vitro and Ex Vivo Evaluation. Pharmaceuticals, 2020, 13, 126.	3.8	19
24	Pediatric-friendly chocolate-based dosage forms for the oral administration of both hydrophilic and lipophilic drugs fabricated with extrusion-based 3D printing. European Journal of Pharmaceutical Sciences, 2020, 147, 105291.	4.0	91
25	Development of Bio-Active Patches Based on Pectin for the Treatment of Ulcers and Wounds Using 3D-Bioprinting Technology. Pharmaceutics, 2020, 12, 56.	4.5	84
26	Chitosan-coated PLGA nanoparticles for the nasal delivery of ropinirole hydrochloride: In vitro and ex vivo evaluation of efficacy and safety. International Journal of Pharmaceutics, 2020, 589, 119776.	5.2	64
27	Experimental and molecular dynamics simulation studies of an anti-hyperlipidemic drug release from microporous zeolites differing in Si/Al content. Microporous and Mesoporous Materials, 2020, 305, 110343.	4.4	6
28	Synergistic Antitumor Potency of a Self-Assembling Peptide Hydrogel for the Local Co-delivery of Doxorubicin and Curcumin in the Treatment of Head and Neck Cancer. Molecular Pharmaceutics, 2019, 16, 2326-2341.	4.6	67
29	In vitro and ex vivo assessment of microporous Faujasite zeolite (NaX-FAU) as a carrier for the oral delivery of danazol. Journal of Drug Delivery Science and Technology, 2019, 51, 177-184.	3.0	16
30	Recent advances in pharmaceutical dosage forms and devices using additive manufacturing technologies. Drug Discovery Today, 2019, 24, 636-643.	6.4	89
31	Development and Characterization of a Self-Nanoemulsifying Drug Delivery System Comprised of Rice Bran Oil for Poorly Soluble Drugs. AAPS PharmSciTech, 2019, 20, 78.	3.3	22
32	Electrosprayed mesoporous particles for improved aqueous solubility of a poorly water soluble anticancer agent: in vitro and ex vivo evaluation. Journal of Controlled Release, 2018, 278, 142-155.	9.9	62
33	Chemotherapeutic Delivery from a Self-Assembling Peptide Nanofiber Hydrogel for the Management of Glioblastoma. Pharmaceutical Research, 2018, 35, 166.	3.5	39
34	Controlled Release of 5-Fluorouracil from Alginate Beads Encapsulated in 3D Printed pH-Responsive Solid Dosage Forms. AAPS PharmSciTech, 2018, 19, 3362-3375.	3.3	57
35	Comparison of different zeolite framework types as carriers for the oral delivery of the poorly soluble drug indomethacin. International Journal of Pharmaceutics, 2017, 528, 76-87.	5.2	29
36	Self-Assembling Peptide Nanofiber Hydrogels for Controlled Ocular Delivery of Timolol Maleate. ACS Biomaterials Science and Engineering, 2017, 3, 3386-3394.	5.2	34

3

#	Article	IF	CITATIONS
37	ADVANCING THE PRACTICAL CLINICAL UTILITY IN PERSONALIZED MEDICINE: CAPABILITIES AND LESSONS LEARNED FOR PHARMACOLOGY AND PHARMACEUTICS. , 2016, , 297-323.		O
38	Dissolution enhancement of the poorly soluble drug nifedipine by co-spray drying with microporous zeolite beta. Journal of Drug Delivery Science and Technology, 2016, 35, 91-97.	3.0	18
39	PLGA/DPPC/trimethylchitosan spray-dried microparticles for the nasal delivery of ropinirole hydrochloride: in vitro, ex vivo and cytocompatibility assessment. Materials Science and Engineering C, 2016, 59, 1053-1062.	7.3	30
40	Smart materials: in situ gel-forming systems for nasal delivery. Drug Discovery Today, 2016, 21, 157-166.	6.4	123
41	Bioactive Self-Assembling Lipid-Like Peptides as Permeation Enhancers for Oral Drug Delivery. Journal of Pharmaceutical Sciences, 2015, 104, 2304-2311.	3.3	20
42	Preparation and Characterization of Bioadhesive Microparticles Comprised of Low Degree of Quaternization Trimethylated Chitosan for Nasal Administration: Effect of Concentration and Molecular Weight. Langmuir, 2014, 30, 12337-12344.	3.5	11
43	Preparation and characterization of multiactive electrospun fibers: Poly aecarpolactone fibers loaded with hydroxyapatite and selected NSAIDs. Journal of Biomedical Materials Research - Part A, 2014, 102, 2583-2589.	4.0	11
44	Electrospun PVP–indomethacin constituents for transdermal dressings and drug delivery devices. International Journal of Pharmaceutics, 2014, 473, 95-104.	5.2	87
45	Development of new drug delivery system based on ordered mesoporous carbons: characterisation and cytocompatibility studies. Journal of Materials Chemistry B, 2013, 1, 3167.	5.8	37
46	Development and Validation of Hplc-Dad and Lc-(Esi)/Ms Methods for the Determination of Sulfasalazine, Mesalazine and Hydrocortisone 21-Acetate in Tablets and Rectal Suppositories: In Vitro and Ex Vivo Permeability Studies. SSRN Electronic Journal, 0, , .	0.4	0