
Alan W Stitt

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6533973/publications.pdf Version: 2024-02-01

ΔΙ ΔΝΙ \λ/ STITT

#	Article	IF	CITATIONS
1	The progress in understanding and treatment of diabetic retinopathy. Progress in Retinal and Eye Research, 2016, 51, 156-186.	7.3	730
2	Diabetic retinopathy: current understanding, mechanisms, and treatment strategies. JCI Insight, 2017, 2,	2.3	662
3	Endothelial Progenitors: A Consensus Statement on Nomenclature. Stem Cells Translational Medicine, 2017, 6, 1316-1320.	1.6	358
4	Neurodegeneration in diabetic retinopathy: does it really matter?. Diabetologia, 2018, 61, 1902-1912.	2.9	358
5	The AGE Inhibitor Pyridoxamine Inhibits Development of Retinopathy in Experimental Diabetes. Diabetes, 2002, 51, 2826-2832.	0.3	336
6	Molecular identity and cellular distribution of advanced glycation endproduct receptors: relationship of p60 to OST-48 and p90 to 80K-H membrane proteins Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 11047-11052.	3.3	332
7	The pathology associated with diabetic retinopathy. Vision Research, 2017, 139, 7-14.	0.7	319
8	Microvascular lesions of diabetic retinopathy: clues towards understanding pathogenesis?. Eye, 2009, 23, 1496-1508.	1.1	282
9	Advanced glycation: an important pathological event in diabetic and age related ocular disease. British Journal of Ophthalmology, 2001, 85, 746-753.	2.1	275
10	Molecular analysis of endothelial progenitor cell (EPC) subtypes reveals two distinct cell populations with different identities. BMC Medical Genomics, 2010, 3, 18.	0.7	274
11	Constitutive nitric oxide synthase expression in retinal vascular endothelial cells is suppressed by high glucose and advanced glycation end products. Diabetes, 1998, 47, 945-952.	0.3	221
12	Current understanding of the molecular and cellular pathology of diabetic retinopathy. Nature Reviews Endocrinology, 2021, 17, 195-206.	4.3	213
13	Differentiation of human pluripotent stem cells to cells similar to cord-blood endothelial colony–forming cells. Nature Biotechnology, 2014, 32, 1151-1157.	9.4	203
14	The role of advanced glycation in the pathogenesis of diabetic retinopathy. Experimental and Molecular Pathology, 2003, 75, 95-108.	0.9	198
15	AGEs, RAGE, and Diabetic Retinopathy. Current Diabetes Reports, 2011, 11, 244-252.	1.7	190
16	Histological and ultrastructural investigation of retinal microaneurysm development in diabetic patients British Journal of Ophthalmology, 1995, 79, 362-367.	2.1	181
17	Myeloid Angiogenic Cells Act as Alternative M2 Macrophages and Modulate Angiogenesis through Interleukin-8. Molecular Medicine, 2011, 17, 1045-1055.	1.9	179
10	ACEs and Disket's Detinemethy 2010 E1 4967		

AGEs and Diabetic Retinopathy. , 2010, 51, 4867.

#	Article	IF	CITATIONS
19	Inhibition of Tumor Necrosis Factor-α Improves Physiological Angiogenesis and Reduces Pathological Neovascularization in Ischemic Retinopathy. American Journal of Pathology, 2005, 166, 637-644.	1.9	171
20	Arteriolar Involvement in the Microvascular Lesions of Diabetic Retinopathy: Implications for Pathogenesis. Microcirculation, 2007, 14, 25-38.	1.0	170
21	The Role of Advanced Glycation End Products in Retinal Microvascular Leukostasis. , 2003, 44, 4457.		162
22	Hyperglycaemia-induced pro-inflammatory responses by retinal Müller glia are regulated by the receptor for advanced glycation end-products (RAGE). Diabetologia, 2010, 53, 2656-2666.	2.9	156
23	Identification of an IMPDH1 mutation in autosomal dominant retinitis pigmentosa (RP10) revealed following comparative microarray analysis of transcripts derived from retinas of wild-type and Rho-/-mice. Human Molecular Genetics, 2002, 11, 547-558.	1.4	152
24	Outgrowth Endothelial Cells: Characterization and Their Potential for Reversing Ischemic Retinopathy. , 2010, 51, 5906.		145
25	Advances in our understanding of diabetic retinopathy. Clinical Science, 2013, 125, 1-17.	1.8	144
26	Increased Levels of Advanced Glycation Endproducts in the Lenses and Blood Vessels of Cigarette Smokers. Molecular Medicine, 1998, 4, 594-601.	1.9	134
27	Protection against methylglyoxal-derived AGEs by regulation of glyoxalase 1 prevents retinal neuroglial and vasodegenerative pathology. Diabetologia, 2012, 55, 845-854.	2.9	131
28	The pathogenic role of Maillard reaction in the aging eye. Amino Acids, 2012, 42, 1205-1220.	1.2	123
29	Advanced glycation end products and diabetic complications. Expert Opinion on Investigational Drugs, 2002, 11, 1205-1223.	1.9	121
30	Retinopathy Is Reduced during Experimental Diabetes in a Mouse Model of Outer Retinal Degeneration. , 2006, 47, 5561.		117
31	Homodimerization Is Essential for the Receptor for Advanced Glycation End Products (RAGE)-mediated Signal Transduction. Journal of Biological Chemistry, 2010, 285, 23137-23146.	1.6	115
32	Advanced Glycation End Products Induce Blood–Retinal Barrier Dysfunction in Normoglycemic Rats. Molecular Cell Biology Research Communications: MCBRC: Part B of Biochemical and Biophysical Research Communications, 2000, 3, 380-388.	1.7	113
33	Inhibition of Platelet-Derived Growth Factor Promotes Pericyte Loss and Angiogenesis in Ischemic Retinopathy. American Journal of Pathology, 2004, 164, 1263-1273.	1.9	108
34	Confocal Raman microscopy can quantify advanced glycation end product (AGE) modifications in Bruch's membrane leading to accurate, nondestructive prediction of ocular aging. FASEB Journal, 2007, 21, 3542-3552.	0.2	107
35	The Maillard Reaction in Eye Diseases. Annals of the New York Academy of Sciences, 2005, 1043, 582-597.	1.8	106
36	The role of advanced glycation end products in retinal ageing and disease. Biochimica Et Biophysica Acta - General Subjects, 2009, 1790, 1109-1116.	1.1	106

#	Article	IF	CITATIONS
37	Characterization of the Advanced Glycation End-Product Receptor Complex in Human Vascular Endothelial Cells. Biochemical and Biophysical Research Communications, 1999, 256, 549-556.	1.0	105
38	Intervention With an Erythropoietin-Derived Peptide Protects Against Neuroglial and Vascular Degeneration During Diabetic Retinopathy. Diabetes, 2011, 60, 2995-3005.	0.3	105
39	Impaired Retinal Angiogenesis in Diabetes: Role of Advanced Glycation End Products and Galectin-3. Diabetes, 2005, 54, 785-794.	0.3	103
40	Müller glial dysfunction during diabetic retinopathy in rats is linked to accumulation of advanced glycation end-products and advanced lipoxidation end-products. Diabetologia, 2011, 54, 690-698.	2.9	102
41	Nitric oxide synthase activity and expression in retinal capillary endothelial cells and pericytes. Current Eye Research, 1995, 14, 285-294.	0.7	98
42	Advanced glycation end products in vitreous: Structural and functional implications for diabetic vitreopathy. Investigative Ophthalmology and Visual Science, 1998, 39, 2517-23.	3.3	97
43	Advanced Glycation End Products and Diabetic Retinopathy. Current Medicinal Chemistry, 2013, 20, 3234-3240.	1.2	94
44	Expression of vascular endothelial growth factor (VEGF) and its receptors is regulated in eyes with intra-ocular tumours. , 1998, 186, 306-312.		92
45	Activation of the ACE2/Angiotensin-(1–7)/Mas Receptor Axis Enhances the Reparative Function of Dysfunctional Diabetic Endothelial Progenitors. Diabetes, 2013, 62, 1258-1269.	0.3	91
46	Chloroquine causes lysosomal dysfunction in neural retina and RPE: Implications for retinopathy. Current Eye Research, 2004, 28, 277-284.	0.7	90
47	Distribution of the receptor for advanced glycation end products in the human male reproductive tract: prevalence in men with diabetes mellitus. Human Reproduction, 2007, 22, 2169-2177.	0.4	89
48	Inhibition of advanced glycation end-products protects against retinal capillary basement membrane expansion during long-term diabetes. Journal of Pathology, 2003, 201, 328-333.	2.1	86
49	Advanced glycation end products accumulate in the reproductive tract of men with diabetes. Journal of Developmental and Physical Disabilities, 2009, 32, 295-305.	3.6	85
50	Vascular stem cells and ischaemic retinopathies. Progress in Retinal and Eye Research, 2011, 30, 149-166.	7.3	83
51	Atherogenesis and Advanced Glycation: Promotion, Progression, and Prevention. Annals of the New York Academy of Sciences, 1997, 811, 115-129.	1.8	82
52	Advanced Glycation End Product (AGE) Accumulation on Bruch's Membrane: Links to Age-Related RPE Dysfunction. , 2009, 50, 441.		80
53	Effect of antioxidants and ACE inhibition on chemical modification of proteins and progression of nephropathy in the streptozotocin diabetic rat. Diabetologia, 2004, 47, 1385-95.	2.9	76
54	The effect of the sulphoxide metabolite of triclabendazole (â€~Fasinex') on the tegument of mature and immature stages of the liver fluke, Fasciola hepatica. Parasitology, 1994, 108, 555-567.	0.7	75

#	Article	IF	CITATIONS
55	Fasciola hepatica: Tegumental surface changes in adult and juvenile flukes following treatment in vitro with the sulphoxide metabolite of triclabendazole (Fasinex). Zeitschrift Für Parasitenkunde (Berlin, Germany), 1993, 79, 529-536.	0.8	73
56	Diabetic retinopathy: quantitative variation in capillary basement membrane thickening in arterial or venous environments British Journal of Ophthalmology, 1994, 78, 133-137.	2.1	73
57	Differential expression of renal AGE-receptor genes in NOD mice: Possible role in nonobese diabetic renal disease. Kidney International, 2000, 58, 1931-1940.	2.6	70
58	Role of Vascular Endothelial Growth Factor and Placental Growth Factors During Retinal Vascular Development and Hyaloid Regression. , 2003, 44, 839.		70
59	Inhibition of Advanced Glycation and Absence of Galectin-3 Prevent Blood-Retinal Barrier Dysfunction during Short-Term Diabetes. Experimental Diabetes Research, 2007, 2007, 1-10.	3.8	70
60	Advanced glycation end products cause increased CCN family and extracellular matrix gene expression in the diabetic rodent retina. Diabetologia, 2007, 50, 1089-1098.	2.9	70
61	The role of immune-related myeloid cells in angiogenesis. Immunobiology, 2013, 218, 1370-1375.	0.8	68
62	Endothelial Progenitor Cells in Diabetic Retinopathy. Frontiers in Endocrinology, 2014, 5, 44.	1.5	67
63	The role of placental growth factor (PIGF) and its receptor system in retinal vascular diseases. Progress in Retinal and Eye Research, 2019, 69, 116-136.	7.3	67
64	Selective loss of vascular smooth muscle cells in the retinal microcirculation of diabetic dogs British Journal of Ophthalmology, 1994, 78, 54-60.	2.1	65
65	Expression of the VEGF Gene Family during Retinal Vaso-Obliteration and Hypoxia. Biochemical and Biophysical Research Communications, 1999, 262, 333-340.	1.0	65
66	Role of the receptor for advanced glycation endproducts (RAGE) in retinal vasodegenerative pathology during diabetes in mice. Diabetologia, 2015, 58, 1129-1137.	2.9	64
67	Deep sequencing reveals predominant expression of miRâ€21 amongst the small nonâ€coding RNAs in retinal microvascular endothelial cells. Journal of Cellular Biochemistry, 2012, 113, 2098-2111.	1.2	62
68	Cathepsin S Cleavage of Protease-Activated Receptor-2 on Endothelial Cells Promotes Microvascular Diabetes Complications. Journal of the American Society of Nephrology: JASN, 2016, 27, 1635-1649.	3.0	61
69	Substrates modified by advanced glycation end-products cause dysfunction and death in retinal pericytes by reducing survival signals mediated by platelet-derived growth factor. Diabetologia, 2004, 47, 1735-1746.	2.9	58
70	Advanced Glycation of Fibronectin Impairs Vascular Repair by Endothelial Progenitor Cells: Implications for Vasodegeneration in Diabetic Retinopathy. , 2008, 49, 1232.		58
71	Ex Vivo Expansion of Human outgrowth Endothelial Cells Leads to IL-8-Mediated Replicative Senescence and Impaired Vasoreparative Function. Stem Cells, 2013, 31, 1657-1668.	1.4	56
72	MicroRNA-199b Modulates Vascular Cell Fate During iPS Cell Differentiation by Targeting the Notch Ligand Jagged1 and Enhancing VEGF Signaling. Stem Cells, 2015, 33, 1405-1418.	1.4	56

#	Article	IF	CITATIONS
73	Lipoprotein-associated phospholipase A ₂ (Lp-PLA ₂) as a therapeutic target to prevent retinal vasopermeability during diabetes. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 7213-7218.	3.3	56
74	Epigenetic Changes in Endothelial Progenitors as a Possible Cellular Basis for Glycemic Memory in Diabetic Vascular Complications. Journal of Diabetes Research, 2015, 2015, 1-17.	1.0	55
75	Multiplex analysis of age-related protein and lipid modifications in human Bruch's membrane. FASEB Journal, 2010, 24, 4816-4824.	0.2	54
76	Spermatogenesis and the fine structure of the mature spermatozoon of the liver fluke, Fasciola hepatica (Trematoda: Digenea). Parasitology, 1990, 101, 395-407.	0.7	53
77	Advanced glycation end product receptor interactions on microvascular cells occur within caveolinâ€rich membrane domains. FASEB Journal, 2000, 14, 2390-2392.	0.2	52
78	The Pleiotropic Effects of Simvastatin on Retinal Microvascular Endothelium Has Important Implications for Ischaemic Retinopathies. PLoS ONE, 2008, 3, e2584.	1.1	52
79	Intravitreal AAV2.COMP-Ang1 Prevents Neurovascular Degeneration in a Murine Model of Diabetic Retinopathy. Diabetes, 2015, 64, 4247-4259.	0.3	51
80	Endothelin-like immunoreactivity and receptor binding in the choroid and retina. Current Eye Research, 1996, 15, 111-117.	0.7	50
81	Bone marrow-CNS connections: Implications in the pathogenesis of diabetic retinopathy. Progress in Retinal and Eye Research, 2012, 31, 481-494.	7.3	50
82	Quaking Is a Key Regulator of Endothelial Cell Differentiation, Neovascularization, and Angiogenesis. Stem Cells, 2017, 35, 952-966.	1.4	49
83	Natural History of Age-Related Retinal Lesions That Precede AMD in Mice Fed High or Low Glycemic Index Diets. , 2012, 53, 622.		47
84	Advanced Glycation and Advanced Lipoxidation: Possible Role in Initiation and Progression of Diabetic Retinopathy. Current Pharmaceutical Design, 2004, 10, 3349-3360.	0.9	46
85	Claudin-5 Redistribution Induced by Inflammation Leads to Anti-VEGF–Resistant Diabetic Macular Edema. Diabetes, 2020, 69, 981-999.	0.3	45
86	Evidence supporting a role for N-(3-formyl-3,4-dehydropiperidino)lysine accumulation in Müller glia dysfunction and death in diabetic retinopathy. Molecular Vision, 2010, 16, 2524-38.	1.1	43
87	Induction of alloxan/streptozotocin diabetes in dogs: A revised experimental technique. Laboratory Animals, 1993, 27, 281-285.	0.5	42
88	Preclinical Evaluation and Optimization of a Cell Therapy Using Human Cord Blood-Derived Endothelial Colony-Forming Cells for Ischemic Retinopathies. Stem Cells Translational Medicine, 2018, 7, 59-67.	1.6	42
89	Murine model of autosomal dominant retinitis pigmentosa generated by targeted deletion at codon 307 of the rds-peripherin gene. Human Molecular Genetics, 2002, 11, 1005-1016.	1.4	41
90	A new advanced glycation inhibitor, LR-90, prevents experimental diabetic retinopathy in rats. British Journal of Ophthalmology, 2008, 92, 545-547.	2.1	40

#	Article	IF	CITATIONS
91	The Vasoreparative Potential of Endothelial Colony Forming Cells: A Journey Through Pre-clinical Studies. Frontiers in Medicine, 2018, 5, 273.	1.2	39
92	Targeting QKI-7 in vivo restores endothelial cell function in diabetes. Nature Communications, 2020, 11, 3812.	5.8	39
93	Fasciola hepatica : disruption of the vitelline cells in vitro by the sulphoxide metabolite of triclabendazole. Parasitology Research, 1996, 82, 333-339.	0.6	38
94	Diabetic retinopathy: morphometric analysis of basement membrane thickening of capillaries in different retinal layers within arterial and venous environments British Journal of Ophthalmology, 1995, 79, 1120-1123.	2.1	37
95	Angiogenic Potential of Vitreous from Proliferative Diabetic Retinopathy and Eales' Disease Patients. PLoS ONE, 2014, 9, e107551.	1.1	37
96	Posterior drug delivery via periocular route: challenges and opportunities. Therapeutic Delivery, 2017, 8, 685-699.	1.2	37
97	Spermatogenesis in <i>Fasciola hepatica:</i> an ultrastructural comparison of the effects of the anthelmintic, thiabendazole ("Fasinexâ€) and the microtubule inhibitor, tubulozole. Invertebrate Reproduction and Development, 1992, 22, 139-150.	0.3	36
98	Gremlin gene expression in bovine retinal pericytes exposed to elevated glucose. British Journal of Ophthalmology, 2005, 89, 1638-1642.	2.1	36
99	Rod Photoreceptor Loss in Rhoâ~'/â~'Mice Reduces Retinal Hypoxia and Hypoxia-Regulated Gene Expression. , 2006, 47, 5553.		36
100	Effect of signal intensity normalization on the multivariate analysis of spectral data in complex â€~realâ€world' datasets. Journal of Raman Spectroscopy, 2009, 40, 429-435.	1.2	36
101	Phenotype-based Discovery of 2-[(E)-2-(Quinolin-2-yl)vinyl]phenol as a Novel Regulator of Ocular Angiogenesis. Journal of Biological Chemistry, 2016, 291, 7242-7255.	1.6	36
102	Characterisation of the advanced glycation endproduct receptor complex in the retinal pigment epithelium. British Journal of Ophthalmology, 2005, 89, 107-112.	2.1	35
103	MicroRNAâ€containing extracellular vesicles released from endothelial colonyâ€forming cells modulate angiogenesis during ischaemic retinopathy. Journal of Cellular and Molecular Medicine, 2017, 21, 3405-3419.	1.6	35
104	Synthetic Peptides Interacting with the 67-kd Laminin Receptor Can Reduce Retinal Ischemia and Inhibit Hypoxia-Induced Retinal Neovascularization. American Journal of Pathology, 2002, 160, 307-313.	1.9	34
105	IL-33 deficiency causes persistent inflammation and severe neurodegeneration in retinal detachment. Journal of Neuroinflammation, 2019, 16, 251.	3.1	34
106	The Role of Lipoxidation in the Pathogenesis of Diabetic Retinopathy. Frontiers in Endocrinology, 2020, 11, 621938.	1.5	34
107	Common pathways in dementia and diabetic retinopathy: understanding the mechanisms of diabetes-related cognitive decline. Trends in Endocrinology and Metabolism, 2022, 33, 50-71.	3.1	34
108	The effect of triclabendazole ("Fasinexâ€) on protein synthesis by the liver fluke, Fasciola hepatica. International Journal for Parasitology, 1995, 25, 421-429.	1.3	32

#	Article	IF	CITATIONS
109	Evaluation of N Îμ-(3-formyl-3,4-dehydropiperidino)lysine as a novel biomarker for the severity of diabetic retinopathy. Diabetologia, 2008, 51, 1723-1730.	2.9	32

Localisation of actin in the liver fluke, Fasciola hepatica. Zeitschrift $F\tilde{A}\frac{1}{4}r$ Parasitenkunde (Berlin,) Tj ETQq0 0 0 rgBT_{0.8} Verlock 10 Tf 50 7

111	Endothelial Progenitors as Tools to Study Vascular Disease. Stem Cells International, 2012, 2012, 1-5.	1.2	31
112	Kv1.5 is a major component underlying the A-type potassium current in retinal arteriolar smooth muscle. American Journal of Physiology - Heart and Circulatory Physiology, 2007, 292, H1001-H1008.	1.5	30
113	Current Concepts on Endothelial Stem Cells Definition, Location, and Markers. Stem Cells Translational Medicine, 2021, 10, S54-S61.	1.6	30
114	Involvement of MAPKs in Endostatin-Mediated Regulation of Blood-Retinal Barrier Function. Current Eye Research, 2006, 31, 1033-1045.	0.7	29
115	Endothelial cell-derived pentraxin 3 limits the vasoreparative therapeutic potential of circulating angiogenic cells. Cardiovascular Research, 2016, 112, 677-688.	1.8	29
116	Targeting RGD-binding integrins as an integrative therapy for diabetic retinopathy and neovascular age-related macular degeneration. Progress in Retinal and Eye Research, 2021, 85, 100966.	7.3	29
117	Therapeutic revascularisation of ischaemic tissue: the opportunities and challenges for therapy using vascular stem/progenitor cells. Stem Cell Research and Therapy, 2012, 3, 31.	2.4	28
118	Animal Models of Retinal Vein Occlusion. , 2017, 58, 6175.		28
119	The Expression of Membrane-Associated 67-kDa Laminin Receptor (67LR) Is Modulated in Vitro by Cell-Contact Inhibition. Molecular Cell Biology Research Communications: MCBRC: Part B of Biochemical and Biophysical Research Communications, 2000, 3, 53-59.	1.7	27
120	Prevention of retinal capillary basement membrane thickening in diabetic dogs by a non-steroidal anti-inflammatory drug. Diabetologia, 2003, 46, 1269-1275.	2.9	27
121	Sclera as a Surrogate Marker for Determining AGE-Modifications in Bruch's Membrane Using a Raman Spectroscopy–Based Index of Aging. , 2011, 52, 1593.		26
122	The 67-kd laminin receptor is preferentially expressed by proliferating retinal vessels in a murine model of ischemic retinopathy. American Journal of Pathology, 1998, 152, 1359-65.	1.9	26
123	Retinal and choroidal responses to panretinal photocoagulation: an ultrastructural perspective. Graefe's Archive for Clinical and Experimental Ophthalmology, 1995, 233, 699-705.	1.0	25
124	Endostatin modulates VEGF-mediated barrier dysfunction in the retinal microvascular endothelium. Experimental Eye Research, 2005, 81, 22-31.	1.2	25
125	Raman spectroscopy of advanced glycation end products (AGEs), possible markers for progressive retinal dysfunction. Journal of Raman Spectroscopy, 2008, 39, 1635-1642.	1.2	25
126	Enhanced Function of Induced Pluripotent Stem Cell-Derived Endothelial Cells Through ESM1 Signaling. Stem Cells, 2019, 37, 226-239.	1.4	25

#	Article	IF	CITATIONS
127	<i>Advanced Glycation as a Basis for Understanding Retinal Aging and Noninvasive Risk Prediction</i> . Annals of the New York Academy of Sciences, 2008, 1126, 59-65.	1.8	24
128	Involvement of TRPV1 and TRPV4 Channels in Retinal Angiogenesis. , 2019, 60, 3297.		24
129	Increased endocytosis in retinal vascular endothelial cells grown in high glucose medium is modulated by inhibitors of nonenzymatic glycosylation. Diabetologia, 1995, 38, 1271-1275.	2.9	23
130	Protein expression profiling during chick retinal maturation: a proteomics-based approach. Proteome Science, 2008, 6, 34.	0.7	23
131	Advanced glycation and retinal pathology during diabetes. Pharmacological Reports, 2005, 57 Suppl, 156-68.	1.5	23
132	RAGE Regulates Immune Cell Infiltration and Angiogenesis in Choroidal Neovascularization. PLoS ONE, 2014, 9, e89548.	1.1	22
133	Upregulation of oxidative stress markers in human microvascular endothelial cells by complexes of serum albumin and digestion products of glycated casein. Journal of Biochemical and Molecular Toxicology, 2009, 23, 364-372.	1.4	21
134	Differences in mouse models of diabetes mellitus in studies of male reproduction. Journal of Developmental and Physical Disabilities, 2010, 33, 709-716.	3.6	21
135	Diabetes-related adduct formation and retinopathy. Journal of Ocular Biology, Diseases, and Informatics, 2011, 4, 10-18.	0.2	21
136	Sources of PDGF expression in murine retina and the effect of short-term diabetes. Molecular Vision, 2003, 9, 665-72.	1.1	21
137	Expression of the 67kDa Laminin Receptor (67LR) during Retinal Development: Correlations with Angiogenesis. Experimental Eye Research, 2001, 73, 81-92.	1.2	20
138	Retinal Endothelial Cell Apoptosis Stimulates Recruitment of Endothelial Progenitor Cells. , 2009, 50, 4967.		20
139	Vascular Regeneration for Ischemic Retinopathies: Hope from Cell Therapies. Current Eye Research, 2020, 45, 372-384.	0.7	20
140	Follistatin-Like 3 Enhances the Function of Endothelial Cells Derived from Pluripotent Stem Cells by Facilitating β-Catenin Nuclear Translocation Through Inhibition of Glycogen Synthase Kinase-3β Activity. Stem Cells, 2018, 36, 1033-1044.	1.4	19
141	The RNA binding protein QKI controls alternative splicing as a model of vascular therapies. Journal of Cell Science, 2019, 132, .	1.2	19
142	Ocular wounding prevents pre-retinal neovascularization and upregulates PEDF expression in the inner retina. Molecular Vision, 2004, 10, 432-8.	1.1	19
143	Differential Modulation of Angiogenesis by Erythropoiesis-Stimulating Agents in a Mouse Model of Ischaemic Retinopathy. PLoS ONE, 2010, 5, e11870.	1.1	18
144	Proteomic profiling of human retinal pigment epithelium exposed to an advanced glycation-modified substrate. Graefe's Archive for Clinical and Experimental Ophthalmology, 2012, 250, 349-359.	1.0	18

Alan W Stitt

#	Article	IF	CITATIONS
145	Attenuating Diabetic Vascular and Neuronal Defects by Targeting P2rx7. International Journal of Molecular Sciences, 2019, 20, 2101.	1.8	18
146	The Vasoreparative Function of Myeloid Angiogenic Cells Is Impaired in Diabetes Through the Induction of IL11 ² . Stem Cells, 2018, 36, 834-843.	1.4	17
147	The vasoreparative potential of endothelial colony-forming cells in the ischemic retina is enhanced by cibinetide, a non-hematopoietic erythropoietin mimetic. Experimental Eye Research, 2019, 182, 144-155.	1.2	17
148	Advanced glycation of the Arg-Gly-Asp (RGD) tripeptide motif modulates retinal microvascular endothelial cell dysfunction. Molecular Vision, 2009, 15, 1509-20.	1.1	17
149	Fasciola hepatica: localization and partial characterization of tubulin. Zeitschrift Für Parasitenkunde (Berlin, Germany), 1992, 78, 103-107.	0.8	16
150	Proteomic profiling of the retinal dysplasia and degeneration chick retina. Molecular Vision, 2010, 16, 7-17.	1.1	16
151	Fasciola hepatica: the effect of the microfilament inhibitor cytochalasin B on the ultrastructure of the adult fluke. Zeitschrift Für Parasitenkunde (Berlin, Germany), 1991, 77, 675-685.	0.8	15
152	The combined effects of diabetes and ionising radiation on the rat retina: an ultrastructural study. Current Eye Research, 1994, 13, 79-86.	0.7	15
153	Advanced glycation endproduct modified basement membrane attenuates endothelin-1 induced [Ca2+]i signalling and contraction in retinal microvascular pericytes. Molecular Vision, 2004, 10, 996-1004.	1.1	15
154	<i>Fasciola hepatica</i> : the effect of the microtubule inhibitors colchicine and tubulozole-C on the ultrastructure of the adult fluke. Parasitology, 1993, 107, 297-309.	0.7	14
155	Fasciola hepatica: Disruption of spermatogenesis by the microfilament inhibitor cytochalasin B. Zeitschrift FĂŀ⁄4r Parasitenkunde (Berlin, Germany), 1991, 77, 123-128.	0.8	13
156	Hypoxia-induced responses by endothelial colony-forming cells are modulated by placental growth factor. Stem Cell Research and Therapy, 2016, 7, 173.	2.4	13
157	Characterization of a Spontaneously Immortalized Murine Müller Glial Cell Line QMMuC-1. , 2018, 59, 1666.		12
158	Advanced glycation alters expression of the 67kDa laminin receptor in retinal microvascular endothelial cells. Life Sciences, 2001, 68, 2695-2703.	2.0	11
159	Anti-angiogenic therapy for uveal melanomamore haste, less speed. British Journal of Ophthalmology, 2002, 86, 368-369.	2.1	11
160	CAMKII as a therapeutic target for growth factor-induced retinal and choroidal neovascularisation. JCI Insight, 2019, 4, .	2.3	11
161	The Placental Growth Factor Pathway and Its Potential Role in Macular Degenerative Disease. Current Eye Research, 2019, 44, 813-822.	0.7	10
162	NOX4 is a major regulator of cord blood-derived endothelial colony-forming cells which promotes post-ischaemic revascularization. Cardiovascular Research, 2019, 116, 393-405.	1.8	10

#	Article	IF	CITATIONS
163	Eyes open to stem cells: safety trial may pave the way for cell therapy to treat retinal disease in patients. Stem Cell Research and Therapy, 2011, 2, 47.	2.4	9
164	Profiling Retinal Biochemistry in the MPDZ Mutant Retinal Dysplasia and Degeneration Chick: A Model of Human RP and LCA. , 2012, 53, 413.		9
165	Therapeutic potential of targeting lipid aldehydes and lipoxidation end-products in the treatment of ocular disease. Future Medicinal Chemistry, 2013, 5, 189-211.	1.1	9
166	Abnormal Glycogen Storage by Retinal Neurons in Diabetes. , 2015, 56, 8008.		9
167	Endothelial Cells Derived From Patients With Diabetic Macular Edema Recapitulate Clinical Evaluations of Anti-VEGF Responsiveness Through the Neuronal Pentraxin 2 Pathway. Diabetes, 2020, 69, 2170-2185.	0.3	9
168	miR-130a activates the VEGFR2/STAT3/HIF1 $\hat{l}\pm$ axis to potentiate the vasoregenerative capacity of endothelial colony-forming cells in hypoxia. Molecular Therapy - Nucleic Acids, 2021, 23, 968-981.	2.3	9
169	Characterisation of WE-14 in porcine ocular tissue. Regulatory Peptides, 2003, 113, 41-47.	1.9	8
170	Raman Spectroscopy for the Detection of AGEs/ALEs. Methods in Molecular Biology, 2013, 965, 297-312.	0.4	8
171	AGE and RAGE inhibitors in the treatment of diabetic retinopathy. Expert Review of Ophthalmology, 2007, 2, 105-120.	0.3	7
172	Effects of an Endothelin Receptor Antagonist on a Model of Hypertensive Retinopathy. Ophthalmic Research, 2010, 43, 99-107.	1.0	7
173	Functional Anatomy, Fine Structure and Basic Pathology of the Retinal Vasculature. , 2007, , 3-23.		7
174	Intravitreal AAV2.COMP-Ang1 Attenuates Deep Capillary Plexus Expansion in the Aged Diabetic Mouse Retina. , 2019, 60, 2494.		6
175	Stereological estimation of Weibel-Palade bodies in the retinal vasculature of normal and diabetic dogs. Current Eye Research, 1994, 13, 705-710.	0.7	5
176	Recombinant α2(IV)NC1 domain of type IV collagen is an effective regulator of retinal capillary endothelial cell proliferation and inhibits pre-retinal neovascularisation. Graefe's Archive for Clinical and Experimental Ophthalmology, 2007, 245, 581-587.	1.0	4
177	Targeting Plasma Kallikrein With a Novel Bicyclic Peptide Inhibitor (THR-149) Reduces Retinal Thickening in a Diabetic Rat Model. , 2021, 62, 18.		4
178	Retinal and choroidal responses to panretinal photocoagulation and ultrastructural perspective. Graefe's Archive for Clinical and Experimental Ophthalmology, 1996, 234, 349-349.	1.0	3
179	Animal Models of Diabetic Retinopathy. Essentials in Ophthalmology, 2016, , 67-83.	0.0	3
180	Inhibition or deletion of 11β-HSD1 does not increase angiogenesis in ischemic retinopathy. Diabetes and Metabolism, 2017, 43, 480-483.	1.4	3

Alan W Stitt

#	ARTICLE	IF	CITATIONS
181	Wedelolactone Attenuates N-methyl-N-nitrosourea-Induced Retinal Neurodegeneration through Suppression of the AIM2/CASP11 Pathway. Biomedicines, 2022, 10, 311.	1.4	3
182	Pericyte and Vascular Smooth Muscle Death in Diabetic Retinopathy Involves Autophagy. International Journal of Translational Medicine, 2022, 2, 26-40.	0.1	3
183	Role of dyslipidemia and AGE/ALE formation in the progression of nephropathy and retinopathy in STZ-diabetic rats. International Congress Series, 2002, 1245, 169-173.	0.2	2
184	Characterisation and therapeutic potential of endothelial progenitor cells. Lancet, The, 2013, 381, S73.	6.3	2
185	Diabetic vascular hyperpermeability: optical coherence tomography angiography and functional loss assessments of relationships among retinal vasculature changes. Scientific Reports, 2021, 11, 4185.	1.6	2
186	Juxtavascular Microglia Scavenge Dying Pericytes and Vascular Smooth Muscle Cells in Diabetic Retinopathy. International Journal of Translational Medicine, 2022, 2, 41-50.	0.1	2
187	An Investigation of Receptor-Mediated Endocytosis and Endosomal Sorting of Albumin and Transferrin in Retinal Vascular Endothelial Cells. Endothelium: Journal of Endothelial Cell Research, 1996, 4, 113-118.	1.7	1
188	Multiplex analysis of ageâ€related protein and lipid modifications in human Bruch's membrane. FASEB Journal, 2010, 24, 4816-4824.	0.2	1
189	Irish college of ophthalmologists. Irish Journal of Medical Science, 1995, 164, 329-340.	0.8	0
190	Characterization of a Glycoaldehyde-Modified Model of the Diabetic Basement Membrane: Relevance to Pathological Responses during Diabetes. Annals of the New York Academy of Sciences, 2005, 1043, 931-931.	1.8	0
191	Quantification of Advanced Glycation End Products in Diabetic Animal Tissues by RP-HPLC: An Investigation of the Role of Pyridoxamine. Annals of the New York Academy of Sciences, 2005, 1043, 944-944.	1.8	0
192	New developments in diabetic retinopathy. Expert Review of Ophthalmology, 2007, 2, 947-956.	0.3	0
193	A Review of Patents Relating to Therapeutic Angiogenesis Using Endothelial Progenitors and Other Vasculogenesis-Related Cell Types. Recent Patents on Regenerative Medicine, 2012, 3, 63-73.	0.4	0
194	200â€Dedifferentiated or Reborn Again? Elucidating The Chromatin Remodelling Mechanisms During Endothelial Cell Reprogramming for Cardiovascular Therapy. Heart, 2016, 102, A134.2-A134.	1.2	0
195	8â€Nadph oxidase 4 is a major regulator of cord blood-derived endothelial colony-forming cells which promotes postischemic revascularisation. , 2018, , .		0
196	Ocular Regeneration – Where are We and What´s on the Horizon –. Current Eye Research, 2020, 45, 229-229.	0.7	0
197	The Role of Advanced Glycation in Diabetic Retinopathy. , 2008, , 187-206.		0

Harnessing Endothelial Progenitor Cells for Therapeutic Angiogenesis. , 2013, , 445-458.

#	Article	IF	CITATIONS
199	Modeling High-Resolution SLO and OCT Retinal Imaging using Backscattering of Light from Elementary Sources. , 2015, , .		0