
JÃ, rgen Schou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6533651/publications.pdf Version: 2024-02-01

IÃ PCEN SCHOU

#	Article	IF	CITATIONS
1	Physical aspects of the pulsed laser deposition technique: The stoichiometric transfer of material from target to film. Applied Surface Science, 2009, 255, 5191-5198.	3.1	223
2	Thermalization of a UV laser ablation plume in a background gas: From a directed to a diffusionlike flow. Physical Review E, 2004, 69, 056403.	0.8	104
3	Sputtering of water ice. Nuclear Instruments & Methods in Physics Research B, 2003, 209, 294-303.	0.6	101
4	UV and RIR matrix assisted pulsed laser deposition of organic MEH-PPV films. Thin Solid Films, 2004, 453-454, 177-181.	0.8	84
5	Ultra-thin Cu2ZnSnS4 solar cell by pulsed laser deposition. Solar Energy Materials and Solar Cells, 2017, 166, 91-99.	3.0	83
6	Langmuir probe study of plasma expansion in pulsed laser ablation. Applied Physics A: Materials Science and Processing, 1999, 69, S601-S604.	1.1	77
7	lon dynamics in laser ablation plumes from selected metals at 355 nm. Applied Surface Science, 2002, 197-198, 175-180.	3.1	77
8	Dynamics of the plume produced by nanosecond ultraviolet laser ablation of metals. Physical Review B, 2003, 67, .	1.1	67
9	Surface morphology of polyethylene glycol films produced by matrix-assisted pulsed laser evaporation (MAPLE): Dependence on substrate temperature. Applied Surface Science, 2006, 252, 4824-4828.	3.1	61
10	High laser-fluence deposition of organic materials in water ice matrices by "MAPLE― Applied Surface Science, 2005, 247, 211-216.	3.1	58
11	Influence of the atomic mass of the background gas on laser ablation plume propagation. Applied Physics A: Materials Science and Processing, 2008, 92, 907-911.	1.1	51
12	Cutting weeds with a CO2 laser. Weed Research, 2001, 41, 19-29.	0.8	50
13	Production of active lysozyme films by matrix assisted pulsed laser evaporation at 355 nm. Chemical Physics Letters, 2007, 435, 350-353.	1.2	48
14	Angular distributions of silver ions and neutrals emitted in vacuum by laser ablation. Europhysics Letters, 1997, 40, 441-446.	0.7	44
15	Energy deposition of keV electrons in light elements. Journal of Applied Physics, 1989, 65, 2258-2266.	1.1	41
16	Laser ablation deposition measurements from silver and nickel. Applied Physics A: Materials Science and Processing, 1996, 63, 247-255.	1.1	41
17	Pulsed laser deposition from ZnS and Cu2SnS3 multicomponent targets. Applied Surface Science, 2015, 336, 385-390.	3.1	41
18	Intrinsic Defects in MoS ₂ Grown by Pulsed Laser Deposition: From Monolayers to Bilayers. ACS Nano, 2021, 15, 2858-2868.	7.3	40

JÃ, RGEN SCHOU

#	Article	IF	CITATIONS
19	Characterization of lysozyme films produced by matrix assisted pulsed laser evaporation (MAPLE). Applied Surface Science, 2007, 253, 6451-6455.	3.1	37
20	Energy band alignment at the heterointerface between CdS and Ag-alloyed CZTS. Scientific Reports, 2020, 10, 18388.	1.6	37
21	Temperature dependent photoreflectance study of Cu2SnS3 thin films produced by pulsed laser deposition. Applied Physics Letters, 2017, 110, .	1.5	35
22	Persistent Double-Layer Formation in Kesterite Solar Cells: A Critical Review. ACS Applied Materials & Interfaces, 2020, 12, 39405-39424.	4.0	35
23	Physical routes for the synthesis of kesterite. JPhys Energy, 2019, 1, 042003.	2.3	34
24	The Minimum Amount of "Matrix―Needed for Matrix-Assisted Pulsed Laser Deposition of Biomolecules. Journal of Physical Chemistry B, 2014, 118, 13290-13299.	1.2	30
25	Laser-induced ion emission during polymer deposition from a flash-frozen water ice matrix. Chemical Physics Letters, 2004, 399, 368-372.	1.2	29
26	Appearance of anodised aluminium: Effect of alloy composition and prior surface finish. Surface and Coatings Technology, 2014, 254, 28-41.	2.2	28
27	Band gap structure modification of amorphous anodic Al oxide film by Ti-alloying. Applied Physics Letters, 2014, 104, .	1.5	26
28	Deposition and characterization of ITO films produced by laser ablation at 355 nm. Applied Physics A: Materials Science and Processing, 2002, 74, 147-152.	1.1	23
29	Monte Carlo description of gas flow from laser-evaporated silver. Applied Physics A: Materials Science and Processing, 1999, 69, S577-S581.	1.1	22
30	Transparent conducting AZO and ITO films produced by pulsed laser ablation at 355 nm. Applied Physics A: Materials Science and Processing, 1999, 69, S807-S810.	1.1	22
31	Laser Irradiation of Polymer-Doped Cryogenic Matrices. Journal of Low Temperature Physics, 2005, 139, 683-692.	0.6	22
32	Angular distributions of emitted particles by laser ablation of silver at 355 nm. Applied Physics A: Materials Science and Processing, 1998, 66, 493-497.	1.1	21
33	Investigation of photocatalytic activity of titanium dioxide deposited on metallic substrates by DC magnetron sputtering. Surface and Coatings Technology, 2013, 216, 35-45.	2.2	21
34	Deposition of matrix-free fullerene films with improved morphology by matrix-assisted pulsed laser evaporation (MAPLE). Chemical Physics Letters, 2013, 588, 119-123.	1.2	21
35	Characterization of Cu ₂ ZnSnS ₄ Particles Obtained by the Hot-Injection Method. ACS Omega, 2020, 5, 10501-10509.	1.6	19
36	Nitride-Based Interfacial Layers for Monolithic Tandem Integration of New Solar Energy Materials on Si: The Case of CZTS. ACS Applied Energy Materials, 2020, 3, 4600-4609.	2.5	19

JÃ, RGEN SCHOU

#	Article	IF	CITATIONS
37	Broadening and attenuation of UV laser ablation plumes in background gases. Applied Surface Science, 2005, 248, 323-328.	3.1	18
38	Oxide route for production of Cu2ZnSnS4 solar cells by pulsed laser deposition. Solar Energy Materials and Solar Cells, 2020, 215, 110605.	3.0	17
39	Electrical characterization of gadolinia-doped ceria films grown by pulsed laser deposition. Applied Physics A: Materials Science and Processing, 2010, 101, 601-607.	1.1	16
40	Nonstoichiometric transfer during laser ablation of metal alloys. Physical Review Materials, 2017, 1, .	0.9	16
41	Expansion of a laser-produced silver plume in light background gases. Applied Physics A: Materials Science and Processing, 2004, 79, 1311-1314.	1.1	15
42	Particle emission from polymer-doped water ice matrices induced by non-linear absorption of laser light at 1064nm. Chemical Physics Letters, 2006, 427, 251-254.	1.2	15
43	Energy distribution of ions produced by laser ablation of silver in vacuum. Applied Surface Science, 2013, 278, 273-277.	3.1	14
44	Pulsed laser deposition of chalcogenide sulfides from multi- and single-component targets: the non-stoichiometric material transfer. Applied Physics A: Materials Science and Processing, 2018, 124, 1.	1.1	14
45	Pulsed laser deposition of aluminum-doped ZnO films at 355Ânm. Applied Physics A: Materials Science and Processing, 2004, 79, 1137-1139.	1.1	13
46	Growth of thin films of TiN on MgO(100) monitored byÂhigh-pressure RHEED. Applied Physics A: Materials Science and Processing, 2008, 93, 705-710.	1.1	13
47	Surface morphology of thin lysozyme films produced by matrix-assisted pulsed laser evaporation (MAPLE). Applied Surface Science, 2007, 254, 1244-1248.	3.1	12
48	Growth of thin films of low molecular weight proteins by matrix assisted pulsed laser evaporation (MAPLE). Applied Physics A: Materials Science and Processing, 2011, 105, 629-633.	1.1	12
49	Formation of copper tin sulfide films by pulsed laser deposition at 248 and 355Ânm. Applied Physics A: Materials Science and Processing, 2016, 122, 1.	1.1	12
50	Energy balance of a laser ablation plume expanding inÂaÂbackground gas. Applied Physics A: Materials Science and Processing, 2010, 101, 209-214.	1.1	11
51	Time-resolved and integrated angular distributions of plume ions from silver at low and medium laser fluence. Applied Physics A: Materials Science and Processing, 2013, 112, 197-202.	1.1	11
52	Growth and thermoelectric properties of FeSb2 films produced by pulsed laser deposition. Applied Physics A: Materials Science and Processing, 2011, 104, 883-887.	1,1	9
53	Processing of C60 thin films by Matrix-Assisted Pulsed Laser Evaporation (MAPLE). Applied Physics A: Materials Science and Processing, 2011, 104, 775-780.	1.1	9
54	Simulation of reflectance from white-anodised aluminium surfaces using polyurethane–TiO2 composite coatings. Journal of Materials Science, 2015, 50, 4565-4575.	1.7	9

JÃ, RGEN SCHOU

#	Article	IF	CITATIONS
55	High fluence deposition of polyethylene glycol films at 1064nm by matrix assisted pulsed laser evaporation (MAPLE). Applied Surface Science, 2007, 253, 7952-7956.	3.1	8
56	Nanosecond laser ablation and deposition of silver, copper, zinc and tin. Applied Physics A: Materials Science and Processing, 2014, 117, 89-92.	1.1	7
57	Quantitative TEM analysis of Al/Cu multilayer systems prepared by pulsed laser deposition. Applied Physics A: Materials Science and Processing, 2010, 101, 677-680.	1.1	5
58	Ablation from artificial or laser-induced crater surfaces of silver by laser irradiation at 355 nm. Applied Physics A: Materials Science and Processing, 1999, 69, S811-S814.	1.1	4
59	Pulsed laser deposition of lysozyme: the dependence on shot numbers and the angular distribution. Applied Physics B: Lasers and Optics, 2013, 113, 367-371.	1.1	4
60	Fundamentals of Laser-Assisted Fabrication of Inorganic and Organic Films. NATO Science for Peace and Security Series B: Physics and Biophysics, 2008, , 241-256.	0.2	3
61	Cu2ZnSnS4 from oxide precursors grown by pulsed laser deposition for monolithic CZTS/Si tandem solar cells. Applied Physics A: Materials Science and Processing, 2022, 128, 1.	1.1	3
62	Gettering in PolySi/SiO <i>_x</i> Passivating Contacts Enables Si-Based Tandem Solar Cells with High Thermal and Contamination Resilience. ACS Applied Materials & Interfaces, 2022, 14, 14342-14358.	4.0	3
63	Laser-induced plasma from pure and doped water-ice at high fluence by ultraviolet and infrared radiation. Proceedings of SPIE, 2008, , .	0.8	2
64	Optical Detections From Worn and Unworn Titanium Compound Surfaces. Tribology Letters, 2010, 37, 15-21.	1.2	2
65	The effects of thermal annealing on the structure and the electrical transport properties of ultrathin gadolinia-doped ceria films grown by pulsed laser deposition. Applied Physics A: Materials Science and Processing, 2011, 104, 845-850.	1.1	2
66	Epitaxial growth of atomically flat gadolinia-doped ceria thin films by pulsed laser deposition. Applied Physics A: Materials Science and Processing, 2011, 105, 697-701.	1.1	2
67	Compression of dry lysozyme targets: The target preparation pressure as a new parameter in protein thin film production by pulsed laser deposition. Applied Surface Science, 2019, 481, 120-124.	3.1	2
68	Electrical characterization of gadolinia doped ceria films grown by pulsed laser deposition. Applied Physics A: Materials Science and Processing, 2010, 101, 601.	1.1	1