List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6533578/publications.pdf Version: 2024-02-01

KAI CHEN

#	Article	IF	CITATIONS
1	Recent advances and applications of microspheres and nanoparticles in transarterial chemoembolization for hepatocellular carcinoma. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2022, 14, e1749.	3.3	15
2	Molecular Imaging of Tumor Microenvironment to Assess the Effects of Locoregional Treatment for Hepatocellular Carcinoma. Hepatology Communications, 2022, 6, 652-664.	2.0	10
3	PCLAF promotes neuroblastoma G1/S cell cycle progression via the E2F1/PTTG1 axis. Cell Death and Disease, 2022, 13, 178.	2.7	12
4	15,16-dihydrotanshinone I inhibits EOMA cells proliferation by interfering in posttranscriptional processing of hypoxia-inducible factor 1. International Journal of Medical Sciences, 2021, 18, 3214-3223.	1.1	2
5	MCM6 indicates adverse tumor features and poor outcomes and promotes G1/S cell cycle progression in neuroblastoma. BMC Cancer, 2021, 21, 784.	1.1	11
6	XPO1/CRM1 is a promising prognostic indicator for neuroblastoma and represented a therapeutic target by selective inhibitor verdinexor. Journal of Experimental and Clinical Cancer Research, 2021, 40, 255.	3.5	12
7	Understanding the Exchange of Systemic HDL Particles Into the Brain and Vascular Cells Has Diagnostic and Therapeutic Implications for Neurodegenerative Diseases. Frontiers in Physiology, 2021, 12, 700847.	1.3	16
8	A comparison of the monomeric [68Ga]NODAGA-NGR and dimeric [68Ga]NOTA-(NGR)2 as aminopeptidase N ligand for positron emission tomography imaging in tumor-bearing mice. European Journal of Pharmaceutical Sciences, 2021, 166, 105964.	1.9	7
9	Exploring Solvent Effects in the Radiosynthesis of ¹⁸ F-Labeled Thymidine Analogues toward Clinical Translation for Positron Emission Tomography Imaging. ACS Pharmacology and Translational Science, 2021, 4, 266-275.	2.5	5
10	Recent Progress in Lymphangioma. Frontiers in Pediatrics, 2021, 9, 735832.	0.9	10
11	Radiofluorinated GPC3-Binding Peptides for PET Imaging of Hepatocellular Carcinoma. Molecular Imaging and Biology, 2020, 22, 134-143.	1.3	14
12	Recent advances in the development of nanoparticles for multimodality imaging and therapy of cancer. Medicinal Research Reviews, 2020, 40, 909-930.	5.0	46
13	Prp19 Is an Independent Prognostic Marker and Promotes Neuroblastoma Metastasis by Regulating the Hippo-YAP Signaling Pathway. Frontiers in Oncology, 2020, 10, 575366.	1.3	12
14	Supramolecular nanosubstrate–mediated delivery system enables CRISPR-Cas9 knockin of hemoglobin beta gene for hemoglobinopathies. Science Advances, 2020, 6, .	4.7	25
15	MYT1 attenuates neuroblastoma cell differentiation by interacting with the LSD1/CoREST complex. Oncogene, 2020, 39, 4212-4226.	2.6	9
16	Preclinical evaluation of a 64Cu-labeled disintegrin for PET imaging of prostate cancer. Amino Acids, 2019, 51, 1569-1575.	1.2	4
17	Small molecules as theranostic agents in cancer immunology. Theranostics, 2019, 9, 7849-7871.	4.6	42
18	Near-Infrared Hybrid Rhodol Dyes with Spiropyran Switches for Sensitive Ratiometric Sensing of pH Changes in Mitochondria and <i>Drosophila melanogaster</i> First-Instar Larvae. ACS Applied Bio Materials, 2019, 2, 4986-4997.	2.3	27

#	Article	IF	CITATIONS
19	PET Imaging of Adenosine Receptors in Diseases. Current Topics in Medicinal Chemistry, 2019, 19, 1445-1463.	1.0	7
20	64Cu-Labeled multifunctional dendrimers for targeted tumor PET imaging. Nanoscale, 2018, 10, 6113-6124.	2.8	38
21	PET imaging of Hsp90 expression in pancreatic cancer using a new 64Cu-labeled dimeric Sansalvamide A decapeptide. Amino Acids, 2018, 50, 897-907.	1.2	8
22	Macrophages as a potential tumor-microenvironment target for noninvasive imaging of early response to anticancer therapy. Biomaterials, 2018, 152, 63-76.	5.7	36
23	Legumain correlates with neuroblastoma differentiation and can be used in prodrug design. Chemical Biology and Drug Design, 2018, 91, 534-544.	1.5	5
24	Polyethyleneimine-Coated Manganese Oxide Nanoparticles for Targeted Tumor PET/MR Imaging. ACS Applied Materials & Interfaces, 2018, 10, 34954-34964.	4.0	56
25	Both serum and tissue Galectinâ€l levels are associated with adverse clinical features in neuroblastoma. Pediatric Blood and Cancer, 2018, 65, e27229.	0.8	10
26	Cross-Linked Fluorescent Supramolecular Nanoparticles for Intradermal Controlled Release of Antifungal Drug—A Therapeutic Approach for Onychomycosis. ACS Nano, 2018, 12, 6851-6859.	7.3	19
27	Proteomic profiling of isogenic primary and metastatic medulloblastoma cell lines reveals differential expression of key metastatic factors. Journal of Proteomics, 2017, 160, 55-63.	1.2	6
28	Cross-Linked Fluorescent Supramolecular Nanoparticles as Finite Tattoo Pigments with Controllable Intradermal Retention Times. ACS Nano, 2017, 11, 153-162.	7.3	11
29	Transformative Nanomedicine of an Amphiphilic Camptothecin Prodrug for Long Circulation and High Tumor Uptake in Cancer Therapy. ACS Nano, 2017, 11, 8838-8848.	7.3	144
30	Albumin/vaccine nanocomplexes that assemble in vivo for combination cancer immunotherapy. Nature Communications, 2017, 8, 1954.	5.8	237
31	Effect of Androgen on Normal Biodistribution of [18F]-2'- Fluoro-5-methyl-1-beta-D-arabinofuranosyluracil (18F-FMAU) in Athymic Non-tumor-bearing Male Mice. Anticancer Research, 2017, 37, 475-480.	0.5	1
32	Phosphoproteomics reveals ALK promote cell progress via RAS/JNK pathway in neuroblastoma. Oncotarget, 2016, 7, 75968-75980.	0.8	12
33	In Vivo Tumor Angiogenesis Imaging Using Peptide-Based Near-Infrared Fluorescent Probes. Methods in Molecular Biology, 2016, 1444, 73-84.	0.4	1
34	A molecular imaging biosensor detects in vivo protein folding and misfolding. Journal of Molecular Medicine, 2016, 94, 799-808.	1.7	5
35	Pretargeted Positron Emission Tomography Imaging That Employs Supramolecular Nanoparticles with <i>in Vivo</i> Bioorthogonal Chemistry. ACS Nano, 2016, 10, 1417-1424.	7.3	60
36	Evaluation of 188Re-labeled NGR–VEGI protein for radioimaging and radiotherapy in mice bearing human fibrosarcoma HT-1080 xenografts. Tumor Biology, 2016, 37, 9121-9129.	0.8	11

#	Article	IF	CITATIONS
37	Targeted Prostate Gland Biopsy With Combined Transrectal Ultrasound, mpMRI, and 18F-FMAU PET/CT. Clinical Nuclear Medicine, 2015, 40, e426-e428.	0.7	11
38	Boramino acid as a marker for amino acid transporters. Science Advances, 2015, 1, e1500694.	4.7	49
39	Development of PET Probes for Cancer Imaging. Current Topics in Medicinal Chemistry, 2015, 15, 795-819.	1.0	17
40	[¹⁸ F]FMAU for PET imaging in breast cancer patients Journal of Clinical Oncology, 2015, 33, 11056-11056.	0.8	1
41	68Ga-Labeled Cyclic NGR Peptide for MicroPET Imaging of CD13 Receptor Expression. Molecules, 2014, 19, 11600-11612.	1.7	26
42	In vivo NIRF imaging-guided delivery of a novel NGR–VEGI fusion protein for targeting tumor vasculature. Amino Acids, 2014, 46, 2721-2732.	1.2	13
43	A direct comparison of tumor angiogenesis with 68Ga-labeled NGR and RGD peptides in HT-1080 tumor xenografts using microPET imaging. Amino Acids, 2014, 46, 2355-2364.	1.2	25
44	Radiolabeled Nanoparticles for Multimodality Tumor Imaging. Theranostics, 2014, 4, 290-306.	4.6	201
45	Near-infrared fluorescence imaging of CD13 receptor expression using a novel Cy5.5-labeled dimeric NGR peptide. Amino Acids, 2014, 46, 1547-1556.	1.2	27
46	MicroPET Imaging of CD13 Expression Using a ⁶⁴ Cu-Labeled Dimeric NGR Peptide Based on Sarcophagine Cage. Molecular Pharmaceutics, 2014, 11, 3938-3946.	2.3	47
47	Recent advances in diagnosis and treatment of gliomas using chlorotoxin-based bioconjugates. American Journal of Nuclear Medicine and Molecular Imaging, 2014, 4, 385-405.	1.0	26
48	99mTc-labeled monomeric and dimeric NGR peptides for SPECT imaging of CD13 receptor in tumor-bearing mice. Amino Acids, 2013, 44, 1337-1345.	1.2	35
49	Synthesis and Evaluation of ⁶⁴ Cu-Labeled Monomeric and Dimeric NGR Peptides for MicroPET Imaging of CD13 Receptor Expression. Molecular Pharmaceutics, 2013, 10, 417-427.	2.3	64
50	PET and SPECT Imaging of Tumor Vasculature. , 2012, , 341-371.		0
51	Strain-Promoted Catalyst-Free Click Chemistry for Rapid Construction of ⁶⁴ Cu-Labeled PET Imaging Probes. ACS Medicinal Chemistry Letters, 2012, 3, 1019-1023.	1.3	38
52	Microwave-assisted one-pot radiosynthesis of 2′-deoxy-2′-[18F]fluoro-5-methyl-1-î²-d-arabinofuranosyluracil ([18F]-FMAU). Nuclear Medicine and Biology, 2012, 39, 1019-1025.	0.3	8
53	[¹⁸ F]-2′ -Fluoro-5-methyl-1-beta-D-arabinofuranosyluracil (¹⁸ F-FMAU) in Prostate Cancer: Initial Preclinical Observations. Molecular Imaging, 2012, 11, 7290.2012.00004.	0.7	12
54	Evaluation of 64Cu Labeled GX1: A Phage Display Peptide Probe for PET Imaging of Tumor Vasculature. Molecular Imaging and Biology, 2012, 14, 96-105.	1.3	43

#	Article	IF	CITATIONS
55	A Cy5.5-labeled phage-displayed peptide probe for near-infrared fluorescence imaging of tumor vasculature in living mice. Amino Acids, 2012, 42, 1329-1337.	1.2	39
56	[18F]-2'-Fluoro-5-methyl-1-beta-D-arabinofuranosyluracil (18F-FMAU) in prostate cancer: initial preclinical observations. Molecular Imaging, 2012, 11, 426-32.	0.7	9
57	Efficient multicistronic co-expression of hNIS and hTPO in prostate cancer cells for nonthyroidal tumor radioiodine therapy. American Journal of Nuclear Medicine and Molecular Imaging, 2012, 2, 483-98.	1.0	2
58	Integrin Targeted Delivery of Chemotherapeutics. Theranostics, 2011, 1, 189-200.	4.6	203
59	Positron Emission Tomography Imaging of Cancer Biology: Current Status and Future Prospects. Seminars in Oncology, 2011, 38, 70-86.	0.8	98
60	Phage display peptide probes for imaging early response to bevacizumab treatment. Amino Acids, 2011, 41, 1103-1112.	1.2	17
61	A new 18F-labeled BBN-RGD peptide heterodimer with a symmetric linker for prostate cancer imaging. Amino Acids, 2011, 41, 439-447.	1.2	45
62	PET imaging of early response to the tyrosine kinase inhibitor ZD4190. European Journal of Nuclear Medicine and Molecular Imaging, 2011, 38, 1237-1247.	3.3	37
63	Design, synthesis and validation of integrin α2β1-targeted probe for microPET imaging of prostate cancer. European Journal of Nuclear Medicine and Molecular Imaging, 2011, 38, 1313-1322.	3.3	22
64	¹⁸ F-Labeled GRPR Agonists and Antagonists: A Comparative Study in Prostate Cancer Imaging. Theranostics, 2011, 1, 220-229.	4.6	73
65	Target-specific delivery of peptide-based probes for PET imaging. Advanced Drug Delivery Reviews, 2010, 62, 1005-1022.	6.6	161
66	18F-Labeled Galacto and PEGylated RGD Dimers for PET Imaging of αvβ3 Integrin Expression. Molecular Imaging and Biology, 2010, 12, 530-538.	1.3	131
67	PET/NIRF/MRI triple functional iron oxide nanoparticles. Biomaterials, 2010, 31, 3016-3022.	5.7	456
68	Phage Display–Derived Peptides for Osteosarcoma Imaging. Clinical Cancer Research, 2010, 16, 4268-4277.	3.2	36
69	Design of Targeted Cardiovascular Molecular Imaging Probes. Journal of Nuclear Medicine, 2010, 51, 3S-17S.	2.8	35
70	Design and Development of Molecular Imaging Probes. Current Topics in Medicinal Chemistry, 2010, 10, 1227-1236.	1.0	174
71	Triblock copolymer coated iron oxide nanoparticle conjugate for tumor integrin targeting. Biomaterials, 2009, 30, 6912-6919.	5.7	147
72	Quantitative PET Imaging of VEGF Receptor Expression. Molecular Imaging and Biology, 2009, 11, 15-22.	1.3	71

#	Article	IF	CITATIONS
73	64Cu-Labeled PEGylated Polyethylenimine for Cell Trafficking and Tumor Imaging. Molecular Imaging and Biology, 2009, 11, 415-423.	1.3	30
74	RGD-human serum albumin conjugates as efficient tumor targeting probes. Molecular Imaging, 2009, 8, 65-73.	0.7	18
75	Non-Invasive PET Imaging of EGFR Degradation Induced by a Heat Shock Protein 90 Inhibitor. Molecular Imaging and Biology, 2008, 10, 99-106.	1.3	41
76	68Ga-labeled multimeric RGD peptides for microPET imaging of integrin αvβ3 expression. European Journal of Nuclear Medicine and Molecular Imaging, 2008, 35, 1100-1108.	3.3	192
77	Evaluation of biodistribution and anti-tumor effect of a dimeric RGD peptide–paclitaxel conjugate in mice with breast cancer. European Journal of Nuclear Medicine and Molecular Imaging, 2008, 35, 1489-1498.	3.3	71
78	Dual-modality optical and positron emission tomography imaging of vascular endothelial growth factor receptor on tumor vasculature using quantum dots. European Journal of Nuclear Medicine and Molecular Imaging, 2008, 35, 2235-2244.	3.3	189
79	¹⁸ F-Labeled BBN-RGD Heterodimer for Prostate Cancer Imaging. Journal of Nuclear Medicine, 2008, 49, 453-461.	2.8	132
80	Auger Electron-Induced Double-Strand Breaks Depend on DNA Topology. Radiation Research, 2008, 170, 70-82.	0.7	25
81	Integrin-targeted imaging and therapy with RGD4C-TNF fusion protein. Molecular Cancer Therapeutics, 2008, 7, 1044-1053.	1.9	53
82	Imaging of VEGF Receptor in a Rat Myocardial Infarction Model Using PET. Journal of Nuclear Medicine, 2008, 49, 667-673.	2.8	102
83	PET/MRI Dual-Modality Tumor Imaging Using Arginine-Glycine-Aspartic (RGD)–Conjugated Radiolabeled Iron Oxide Nanoparticles. Journal of Nuclear Medicine, 2008, 49, 1371-1379.	2.8	507
84	microPET of Tumor Integrin ÂvÂ3 Expression Using 18F-Labeled PEGylated Tetrameric RGD Peptide (18F-FPRGD4). Journal of Nuclear Medicine, 2007, 48, 1536-1544.	2.8	120
85	Synthesis of Coumarin–Polyamine-Based Molecular Probe for the Detection of Hydroxyl Radicals Generated by Gamma Radiation. Radiation Research, 2007, 168, 233-242.	0.7	14
86	64Cu-Labeled Tetrameric and Octameric RGD Peptides for Small-Animal PET of Tumor ÂvÂ3 Integrin Expression. Journal of Nuclear Medicine, 2007, 48, 1162-1171.	2.8	227
87	Using Hoechst 33342 to Target Radioactivity to the Cell Nucleus. Radiation Research, 2007, 167, 167-175.	0.7	29
88	Dual-Function Probe for PET and Near-Infrared Fluorescence Imaging of Tumor Vasculature. Journal of Nuclear Medicine, 2007, 48, 1862-1870.	2.8	400
89	Molecular-Docking-Guided Design, Synthesis, and Biologic Evaluation of Radioiodinated Quinazolinone Prodrugs. Journal of Medicinal Chemistry, 2007, 50, 663-673.	2.9	34
90	In vivo biodistribution and highly efficient tumour targeting of carbon nanotubes in mice. Nature Nanotechnology, 2007, 2, 47-52.	15.6	1,384

#	Article	IF	CITATIONS
91	Click Chemistry for ¹⁸ F-Labeling of RGD Peptides and microPET Imaging of Tumor Integrin α _v β ₃ Expression. Bioconjugate Chemistry, 2007, 18, 1987-1994.	1.8	139
92	Quantitative PET of EGFR expression in xenograft-bearing mice using 64Cu-labeled cetuximab, a chimeric anti-EGFR monoclonal antibody. European Journal of Nuclear Medicine and Molecular Imaging, 2007, 34, 850-858.	3.3	231
93	A new PET tracer specific for vascular endothelial growth factor receptor 2. European Journal of Nuclear Medicine and Molecular Imaging, 2007, 34, 2001-2010.	3.3	114
94	Multimodality molecular imaging of glioblastoma growth inhibition with vasculature-targeting fusion toxin VEGF121/rGel. Journal of Nuclear Medicine, 2007, 48, 445-54.	2.8	85
95	Crystal structure of 2-(2'-hydroxyphenyl)-6-tributylstannyl-4-(3H)-quinazolinone and 2-(2'-hydroxyphenyl)-6-iodo-4-(3H)-quinazolinone. Crystal Research and Technology, 2006, 41, 622-627.	0.6	1
96	In vitro and In vivo Characterization of 64Cu-Labeled AbegrinTM, a Humanized Monoclonal Antibody against Integrin αvβ3. Cancer Research, 2006, 66, 9673-9681.	0.4	192
97	Mechanisms Underlying Production of Double-Strand Breaks in Plasmid DNA after Decay of1251-Hoechst. Radiation Research, 2006, 166, 333-344.	0.7	19
98	In silico design, synthesis, and biological evaluation of radioiodinated quinazolinone derivatives for alkaline phosphatase–mediated cancer diagnosis and therapy. Molecular Cancer Therapeutics, 2006, 5, 3001-3013.	1.9	47
99	Molecular Simulation of Ligandâ€Binding with DNA: Implications for125Iâ€Labeled Pharmaceutical Design. International Journal of Radiation Biology, 2004, 80, 921-926.	1.0	15
100	Molecular modeling of the interaction of iodinated Hoechst analogs with DNA: implications for new radiopharmaceutical design. Computational and Theoretical Chemistry, 2004, 711, 49-56.	1.5	25
101	Synthesis and Biologic Evaluation of a Radioiodinated Quinazolinone Derivative for Enzyme-Mediated Insolubilization Therapy. Bioconjugate Chemistry, 2002, 13, 357-364.	1.8	29