Fabian Amman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6533449/publications.pdf Version: 2024-02-01

FARIAN AMMAN

#	Article	IF	CITATIONS
1	Dual RNA-seq unveils noncoding RNA functions in host–pathogen interactions. Nature, 2016, 529, 496-501.	13.7	450
2	Inosine induces context-dependent recoding and translational stalling. Nucleic Acids Research, 2019, 47, 3-14.	6.5	128
3	A high resolution A-to-I editing map in the mouse identifies editing events controlled by pre-mRNA splicing. Genome Research, 2019, 29, 1453-1463.	2.4	90
4	Viral variant-resolved wastewater surveillance of SARS-CoV-2 at national scale. Nature Biotechnology, 2022, 40, 1814-1822.	9.4	82
5	TSSAR: TSS annotation regime for dRNA-seq data. BMC Bioinformatics, 2014, 15, 89.	1.2	73
6	Archaeal Signal Transduction: Impact of Protein Phosphatase Deletions on Cell Size, Motility, and Energy Metabolism in Sulfolobus acidocaldarius. Molecular and Cellular Proteomics, 2013, 12, 3908-3923.	2.5	69
7	Transcriptional Responses to IFN- \hat{I}^3 Require Mediator Kinase-Dependent Pause Release and Mechanistically Distinct CDK8 and CDK19 Functions. Molecular Cell, 2019, 76, 485-499.e8.	4.5	52
8	Fast accessibility-based prediction of RNA–RNA interactions. Bioinformatics, 2011, 27, 1934-1940.	1.8	48
9	Differential transcriptional responses to Ebola and Marburg virus infection in bat and human cells. Scientific Reports, 2016, 6, 34589.	1.6	47
10	Transcriptional profiling of <i>Bordetella pertussis</i> reveals requirement of RNA chaperone Hfq for Type III secretion system functionality. RNA Biology, 2015, 12, 175-185.	1.5	42
11	RNASeq Based Transcriptional Profiling of Pseudomonas aeruginosa PA14 after Short- and Long-Term Anoxic Cultivation in Synthetic Cystic Fibrosis Sputum Medium. PLoS ONE, 2016, 11, e0147811.	1.1	42
12	Impact of Hfq on the Bacillus subtilis Transcriptome. PLoS ONE, 2014, 9, e98661.	1.1	40
13	An internal deletion of ADAR rescued by MAVS deficiency leads to a minute phenotype. Nucleic Acids Research, 2020, 48, 3286-3303.	6.5	39
14	Functional characterization of the human tRNA methyltransferases TRMT10A and TRMT10B. Nucleic Acids Research, 2020, 48, 6157-6169.	6.5	38
15	2D Meets 4G: G-Quadruplexes in RNA Secondary Structure Prediction. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2013, 10, 832-844.	1.9	37
16	Accurate mapping of tRNA reads. Bioinformatics, 2018, 34, 1116-1124.	1.8	33
17	ViennaNGS: A toolbox for building efficient next- generation sequencing analysis pipelines. F1000Research, 2015, 4, 50.	0.8	33
18	Primary transcriptome analysis reveals importance of IS elements for the shaping of the transcriptional landscape of <i>Bordetella pertussis </i> . RNA Biology, 2018, 15, 967-975.	1.5	32

Fabian Amman

#	Article	IF	CITATIONS
19	ADAR-deficiency perturbs the global splicing landscape in mouse tissues. Genome Research, 2020, 30, 1107-1118.	2.4	32
20	ViennaNGS: A toolbox for building efficient next- generation sequencing analysis pipelines. F1000Research, 2015, 4, 50.	0.8	31
21	Adaptive sequence evolution is driven by biotic stress in a pair of orchid species (<i>Dactylorhiza</i>) with distinct ecological optima. Molecular Ecology, 2017, 26, 3649-3662.	2.0	25
22	The SmAP1/2 proteins of the crenarchaeon Sulfolobus solfataricus interact with the exosome and stimulate A-rich tailing of transcripts. Nucleic Acids Research, 2017, 45, 7938-7949.	6.5	24
23	Alterations of the Transcriptome of Sulfolobus acidocaldarius by Exoribonuclease aCPSF2. PLoS ONE, 2013, 8, e76569.	1.1	21
24	Detection and abundance of SARS-CoV-2 in wastewater in Liechtenstein, and the estimation of prevalence and impact of the B.1.1.7 variant. Journal of Water and Health, 2022, 20, 114-125.	1.1	18
25	Emergence of SARS-CoV-2 Alpha lineage and its correlation with quantitative wastewater-based epidemiology data. Water Research, 2022, 215, 118257.	5.3	17
26	Negative Control of RpoS Synthesis by the sRNA ReaL in Pseudomonas aeruginosa. Frontiers in Microbiology, 2018, 9, 2488.	1.5	16
27	Identification of RNA 3´ ends and termination sites in <i>Haloferax volcanii</i> . RNA Biology, 2020, 17, 663-676.	1.5	16
28	Gene Expression Profiling of Pseudomonas aeruginosa Upon Exposure to Colistin and Tobramycin. Frontiers in Microbiology, 2021, 12, 626715.	1.5	16
29	Transcriptional profiling of human macrophages during infection with <i>Bordetella pertussis</i> . RNA Biology, 2020, 17, 731-742.	1.5	15
30	The Anaerobically Induced sRNA Pail Affects Denitrification in Pseudomonas aeruginosa PA14. Frontiers in Microbiology, 2017, 8, 2312.	1.5	14
31	Signal transduction-dependent small regulatory RNA is involved in glutamate metabolism of the human pathogen <i>Bordetella pertussis</i> . Rna, 2018, 24, 1530-1541.	1.6	14
32	Organ-wide profiling in mouse reveals high editing levels of Filamin B mRNA in the musculoskeletal system. RNA Biology, 2018, 15, 877-885.	1.5	13
33	Bioinformatics of prokaryotic RNAs. RNA Biology, 2014, 11, 470-483.	1.5	12
34	iRAPs curb antisense transcription in E. coli. Nucleic Acids Research, 2019, 47, 10894-10905.	6.5	12
35	Comparative Integrated Omics Analysis of the Hfq Regulon in Bordetella pertussis. International Journal of Molecular Sciences, 2019, 20, 3073.	1.8	11
36	Adaptor protein RapZ activates endoribonuclease RNase E by protein–protein interaction to cleave a small regulatory RNA. Rna, 2020, 26, 1198-1215.	1.6	10

Fabian Amman

#	Article	IF	CITATIONS
37	Comparative Omics Analysis of Historic and Recent Isolates of <i>Bordetella pertussis</i> and Effects of Genome Rearrangements on Evolution. Emerging Infectious Diseases, 2021, 27, 57-68.	2.0	10
38	Modelling Translation Initiation under the Influence of sRNA. International Journal of Molecular Sciences, 2012, 13, 16223-16240.	1.8	9
39	Comparative genomics of Czech vaccine strains of Bordetella pertussis. Pathogens and Disease, 2018, 76, .	0.8	7
40	The Trouble with Long-Range Base Pairs in RNA Folding. Lecture Notes in Computer Science, 2013, , 1-11.	1.0	7
41	RNA Folding Algorithms with G-Quadruplexes. Lecture Notes in Computer Science, 2012, , 49-60.	1.0	7
42	Rewiring of Gene Expression in Pseudomonas aeruginosa During Diauxic Growth Reveals an Indirect Regulation of the MexGHI-OpmD Efflux Pump by Hfq. Frontiers in Microbiology, 0, 13, .	1.5	5
43	Nascent RNA signaling to yeast RNA Pol II during transcription elongation. PLoS ONE, 2018, 13, e0194438.	1.1	2
44	Enhancing the Cell-Free Expression of Native Membrane Proteins by In Silico Optimization of the Coding Sequence—An Experimental Study of the Human Voltage-Dependent Anion Channel. Membranes, 2021, 11, 741.	1.4	2
45	MSF: Modulated Sub-graph Finder. F1000Research, 2018, 7, 1346.	0.8	1
46	MSF: Modulated Sub-graph Finder. F1000Research, 0, 7, 1346.	0.8	1
47	MSF: Modulated Sub-graph Finder. F1000Research, 2018, 7, 1346.	0.8	1