
Tony D Southall

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6532752/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Detection of in vivo protein–DNA interactions using DamID in mammalian cells. Nature Protocols, 2007, 2, 1467-1478.	5.5	341
2	Cell-Type-Specific Profiling of Gene Expression and Chromatin Binding without Cell Isolation: Assaying RNA Pol II Occupancy in Neural Stem Cells. Developmental Cell, 2013, 26, 101-112.	3.1	221
3	<i>Escargot</i> maintains stemness and suppresses differentiation in <i>Drosophila</i> intestinal stem cells. EMBO Journal, 2014, 33, 2967-2982.	3.5	113
4	Neural stem cell transcriptional networks highlight genes essential for nervous system development. EMBO Journal, 2009, 28, 3799-3807.	3.5	102
5	Decoding gene regulation in the fly brain. Nature, 2022, 601, 630-636.	13.7	102
6	Male-Specific Fruitless Isoforms Target Neurodevelopmental Genes to Specify a Sexually Dimorphic Nervous System. Current Biology, 2014, 24, 229-241.	1.8	95
7	Regulation of <i>Drosophila</i> intestinal stem cell maintenance and differentiation by the transcription factor Escargot. EMBO Journal, 2014, 33, 2983-2996.	3.5	74
8	Dedifferentiation of Neurons Precedes Tumor Formation in Iola Mutants. Developmental Cell, 2014, 28, 685-696.	3.1	73
9	CATaDa reveals global remodelling of chromatin accessibility during stem cell differentiation in vivo. ELife, 2018, 7, .	2.8	67
10	Ets21c Governs Tissue Renewal, Stress Tolerance, and Aging in the Drosophila Intestine. Cell Reports, 2019, 27, 3019-3033.e5.	2.9	49
11	Dam it's good! DamID profiling of protein-DNA interactions. Wiley Interdisciplinary Reviews: Developmental Biology, 2016, 5, 25-37.	5.9	48
12	Neuroblast-specific open chromatin allows the temporal transcription factor, Hunchback, to bind neuroblast-specific loci. ELife, 2019, 8, .	2.8	46
13	Targeted DamID reveals differential binding of mammalian pluripotency factors. Development (Cambridge), 2018, 145, .	1.2	43
14	The LIM-Homeodomain Protein Islet Dictates Motor Neuron Electrical Properties by Regulating K+ Channel Expression. Neuron, 2012, 75, 663-674.	3.8	38
15	DamID as a versatile tool for understanding gene regulation. Development (Cambridge), 2019, 146, .	1.2	38
16	The homeobox transcription factor Even-skipped regulates acquisition of electrical properties in Drosophila neurons. Neural Development, 2006, 1, 3.	1.1	35
17	The Transcription Factors Islet and Lim3 Combinatorially Regulate Ion Channel Gene Expression. Journal of Neuroscience, 2014, 34, 2538-2543.	1.7	24
18	The GAL4 System: A Versatile Toolkit for Gene Expression in <i>Drosophila</i> . Cold Spring Harbor Protocols, 2008, 2008, pdb.top49.	0.2	22

TONY D SOUTHALL

#	Article	IF	CITATIONS
19	Dynamic adult tracheal plasticity drives stem cell adaptation to changes in intestinal homeostasis in Drosophila. Nature Cell Biology, 2021, 23, 485-496.	4.6	20
20	Functional Conservation of the Glide/Gcm Regulatory Network Controlling Glia, Hemocyte, and Tendon Cell Differentiation in <i>Drosophila</i> . Genetics, 2016, 202, 191-219.	1.2	18
21	Chromatin profiling in model organisms. Briefings in Functional Genomics & Proteomics, 2007, 6, 133-140.	3.8	17
22	An auxin-inducible, GAL4-compatible, gene expression system for Drosophila. ELife, 2022, 11, .	2.8	17
23	<i>fs(1)h</i> controls metabolic and immune function and enhances survival via AKT and FOXO in <i>Drosophila</i> . DMM Disease Models and Mechanisms, 2019, 12, .	1.2	14
24	Dynamic neurotransmitter specific transcription factor expression profiles during <i>Drosophila</i> development. Biology Open, 2020, 9, .	0.6	14
25	Comprehensive Characterization of the Complex lola Locus Reveals a Novel Role in the Octopaminergic Pathway via Tyramine Beta-Hydroxylase Regulation. Cell Reports, 2017, 21, 2911-2925.	2.9	13
26	Condensin I subunit Cap-G is essential for proper gene expression during the maturation of post-mitotic neurons. ELife, 2020, 9, .	2.8	13
27	Getting Down to Specifics. Advances in Genetics, 2015, 91, 103-151.	0.8	12
28	Gene expression profiling of epidermal cell types in <i>C. elegans</i> using Targeted DamID. Development (Cambridge), 2021, 148, .	1.2	11
29	FlyORF-TaDa allows rapid generation of new lines for <i>in vivo</i> cell-type-specific profiling of protein–DNA interactions in <i>Drosophila melanogaster</i> . G3: Genes, Genomes, Genetics, 2021, 11, .	0.8	7
30	Escargot controls somatic stem cell maintenance through the attenuation of the insulin receptor pathway in Drosophila. Cell Reports, 2022, 39, 110679.	2.9	6
31	Generation of Driver and Reporter Constructs for the GAL4 Expression System in <i>Drosophila</i> : Figure 1 Cold Spring Harbor Protocols, 2008, 2008, pdb.prot5029.	0.2	5
32	Maintenance of Cell Fate by the Polycomb Group Gene Sex Combs Extra Enables a Partial Epithelial Mesenchymal Transition in Drosophila. G3: Genes, Genomes, Genetics, 2020, 10, 4459-4471.	0.8	0