Peng Sui

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6531825/publications.pdf

Version: 2024-02-01

687363 752698 24 410 13 20 citations h-index g-index papers 24 24 24 530 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Crop rotation to diversify the soil microbiome in the semi-arid area of Inner Mongolia, China. Archives of Agronomy and Soil Science, 2023, 69, 1161-1176.	2.6	2
2	Nitrogen Footprint of a Recycling System Integrated with Cropland and Livestock in the North China Plain. Plants, 2022, 11, 842.	3.5	5
3	Sustainability evaluation for a circular maize-pig system driven by indigenous microbes: a case study in Northeast China. Ecosystem Health and Sustainability, 2022, 8, .	3.1	2
4	Linking ecosystem services and economic development for optimizing land use change in the poverty areas. Ecosystem Health and Sustainability, 2021, 7, .	3.1	5
5	Effects of Organic Amendments on the Improvement of Soil Nutrients and Crop Yield in Sandy Soils during a 4-Year Field Experiment in Huang-Huai-Hai Plain, Northern China. Agronomy, 2021, 11, 157.	3.0	16
6	Emergy-Based Evaluation on the Systemic Sustainability of Rural Ecosystem under China Poverty Alleviation and Rural Revitalization: A Case of the Village in North China. Energies, 2021, 14, 3994.	3.1	6
7	Will Maize-Based Cropping Systems Reduce Water Consumption without Compromise of Food Security in the North China Plain?. Water (Switzerland), 2020, 12, 2946.	2.7	3
8	Effects of Seven Diversified Crop Rotations on Selected Soil Health Indicators and Wheat Productivity. Agronomy, 2020, 10, 235.	3.0	17
9	Carbon footprints of grain-, forage-, and energy-based cropping systems in the North China plain. International Journal of Life Cycle Assessment, 2019, 24, 371-385.	4.7	20
10	Linking bacterial community to aggregate fractions with organic amendments in a sandy soil. Land Degradation and Development, 2019, 30, 1828-1839.	3.9	18
11	Optimum Sowing Dates for High-Yield Maize when Grown as Sole Crop in the North China Plain. Agronomy, 2019, 9, 198.	3.0	10
12	Water-stable aggregates and carbon accumulation in barren sandy soil depend on organic amendment method: A three-year field study. Journal of Cleaner Production, 2019, 212, 393-400.	9.3	70
13	Greenhouse gas emissions from soil under maize–soybean intercrop in the North China Plain. Nutrient Cycling in Agroecosystems, 2018, 110, 451-465.	2.2	27
14	Effects of different agricultural organic wastes on soil GHG emissions: During a 4-year field measurement in the North China Plain. Waste Management, 2018, 81, 202-210.	7.4	22
15	The effect of different organic materials amendment on soil bacteria communities in barren sandy loam soil. Environmental Science and Pollution Research, 2017, 24, 24019-24028.	5.3	34
16	Recharge and Groundwater Use in the North China Plain for Six Irrigated Crops for an Eleven Year Period. PLoS ONE, 2015, 10, e0115269.	2.5	58
17	Aggregate stability and associated C and N in a silty loam soil as affected by organic material inputs. Journal of Integrative Agriculture, 2015, 14, 774-787.	3.5	24
18	Yield and quality of maize stover: Variation among cultivars and effects of N fertilization. Journal of Integrative Agriculture, 2015, 14, 1581-1587.	3.5	13

#	Article	IF	CITATIONS
19	Subsoiling and Ridge Tillage Alleviate the High Temperature Stress in Spring Maize in the North China Plain. Journal of Integrative Agriculture, 2013, 12, 2179-2188.	3.5	24
20	Enhancement of Diosgenin Production in Dioscorea zingiberensis Cell Culture by Oligosaccharide Elicitor from its Endophytic Fungus Fusarium oxysporum Dzf17. Natural Product Communications, 2009, 4, 1934578X0900401.	0.5	13
21	Poplar stem blister canker and its control strategies by plant extracts. World Journal of Microbiology and Biotechnology, 2008, 24, 1579-1584.	3.6	9
22	Dynamics of soil water content under different tillage systems in agro-pastural eco-zone. Frontiers of Agriculture in China, 2008, 2, 208-215.	0.2	5
23	Nitrogen and Phosphorus Uptake and Yield of Wheat and Maize Intercropped with Poplar. Arid Land Research and Management, 2008, 22, 296-309.	1.6	1
24	Water Use and Nitrate Nitrogen Changes in Intensive Farmlands Following Introduction of Poplar (PopulusÂ×Âeuramericana) in a Semi-Arid Region. Arid Land Research and Management, 2006, 20, 281-294.	1.6	6