
David C Noone

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6531503/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	lsotopic changes due to convective moistening of the lower troposphere associated with variations in the ENSO and IOD from 2005 to 2006. Tellus, Series B: Chemical and Physical Meteorology, 2022, 67, 26177.	0.8	12
2	Aircraft measurements of water vapor heavy isotope ratios in the marine boundary layer and lower troposphere during ORACLES. Earth System Science Data, 2022, 14, 1811-1829.	3.7	3
3	Amazonian terrestrial water balance inferred from satellite-observed water vapor isotopes. Nature Communications, 2022, 13, 2686.	5.8	5
4	Enhanced Photosynthesis and Transpiration in an Old Growth Forest Due To Wildfire Smoke. Geophysical Research Letters, 2022, 49, .	1.5	2
5	The NEON Daily Isotopic Composition of Environmental Exchanges Dataset. Scientific Data, 2022, 9, .	2.4	4
6	Orbitally driven evolution of Asian monsoon and stable water isotope ratios during the Holocene: Isotope-enabled climate model simulations and proxy data comparisons. Quaternary Science Reviews, 2021, 252, 106743.	1.4	8
7	Hydroclimate footprint of pan-Asian monsoon water isotope during the last deglaciation. Science Advances, 2021, 7, .	4.7	66
8	Calibration Strategies for Detecting Macroscale Patterns in NEON Atmospheric Carbon Isotope Observations. Journal of Geophysical Research G: Biogeosciences, 2021, 126, e2020JG005862.	1.3	4
9	The large-scale, long-term coupling of temperature, hydrology, and water isotopes. Journal of Climate, 2021, , 1-51.	1.2	3
10	Enhancing Understanding of the Hydrological Cycle via Pairing of Processâ€Oriented and Isotope Ratio Tracers. Journal of Advances in Modeling Earth Systems, 2021, 13, e2021MS002648.	1.3	7
11	Influence of sea-ice anomalies on Antarctic precipitation using source attribution in the Community Earth System Model. Cryosphere, 2020, 14, 429-444.	1.5	16
12	Simulation of early Eocene water isotopes using an Earth system model and its implication for past climate reconstruction. Earth and Planetary Science Letters, 2020, 537, 116164.	1.8	30
13	Tracking Moisture Sources of Precipitation over Central Asia: A Study Based on the Water-Source-Tagging Method. Journal of Climate, 2020, 33, 10339-10355.	1.2	31
14	Comparison of optimal estimation HDOâ^•H ₂ O retrievals from AIRS with ORACLES measurements. Atmospheric Measurement Techniques, 2020, 13, 1825-1834.	1.2	6
15	Volcanic Eruption Signatures in the Isotopeâ€Enabled Last Millennium Ensemble. Paleoceanography and Paleoclimatology, 2019, 34, 1534-1552.	1.3	24
16	Last Millennium Reanalysis with an expanded proxy database and seasonal proxy modeling. Climate of the Past, 2019, 15, 1251-1273.	1.3	120
17	The Connected Isotopic Water Cycle in the Community Earth System Model Version 1. Journal of Advances in Modeling Earth Systems, 2019, 11, 2547-2566.	1.3	111
18	Climate, Landforms, and Geology Affect Baseflow Sources in a Mountain Catchment. Water Resources Research, 2019, 55, 5238-5254.	1.7	42

#	Article	IF	CITATIONS
19	Moist Entropy and Water Isotopologues in a Zonal Overturning Circulation Framework of the Maddenâ€Julian Oscillation. Journal of Geophysical Research D: Atmospheres, 2019, 124, 1248-1265.	1.2	3
20	WaxPSM: A Forward Model of Leaf Wax Hydrogen Isotope Ratios to Bridge Proxy and Model Estimates of Past Climate. Journal of Geophysical Research G: Biogeosciences, 2019, 124, 2107-2125.	1.3	17
21	The Influence of Competing Hydroclimate Processes on Stable Isotope Ratios in Tropical Rainfall. Geophysical Research Letters, 2019, 46, 1622-1633.	1.5	61
22	Additions to the Last Millennium Reanalysis Multi-Proxy Database. Data Science Journal, 2019, 18, 2.	0.6	24
23	Seasonal and ENSO Influences on the Stable Isotopic Composition of Galápagos Precipitation. Journal of Geophysical Research D: Atmospheres, 2018, 123, 261-275.	1.2	18
24	Twentieth Century Seawater <i>δ</i> ^{18} O Dynamics and Implications for Coralâ€Based Climate Reconstruction. Paleoceanography and Paleoclimatology, 2018, 33, 606-625.	1.3	17
25	Impact of Convective Activity on Precipitation <i>δ</i> ¹⁸ 0 in Isotopeâ€Enabled General Circulation Models. Journal of Geophysical Research D: Atmospheres, 2018, 123, 13,595.	1.2	22
26	Last Century Warming Over the Canadian Atlantic Shelves Linked to Weak Atlantic Meridional Overturning Circulation. Geophysical Research Letters, 2018, 45, 12,376.	1.5	33
27	Ecosystem fluxes of carbonyl sulfide in an old-growth forest: temporal dynamics and responses to diffuse radiation and heat waves. Biogeosciences, 2018, 15, 7127-7139.	1.3	13
28	Large Uptake of Atmospheric OCS Observed at a Moist Old Growth Forest: Controls and Implications for Carbon Cycle Applications. Journal of Geophysical Research G: Biogeosciences, 2018, 123, 3424-3438.	1.3	15
29	Interpreting Precessionâ€Driven δ ¹⁸ 0 Variability in the South Asian Monsoon Region. Journal of Geophysical Research D: Atmospheres, 2018, 123, 5927-5946.	1.2	49
30	Numerical Evaluation of the Modern and Future Origins of Atmospheric River Moisture Over the West Coast of the United States. Journal of Geophysical Research D: Atmospheres, 2018, 123, 6423-6442.	1.2	32
31	Tracking the Strength of the Walker Circulation With Stable Isotopes in Water Vapor. Journal of Geophysical Research D: Atmospheres, 2018, 123, 7254-7270.	1.2	20
32	Impact of deep convection on the isotopic amount effect in tropical precipitation. Journal of Geophysical Research D: Atmospheres, 2017, 122, 1505-1523.	1.2	43
33	Spatiotemporal variability in the δ ¹⁸ Oâ€salinity relationship of seawater across the tropical Pacific Ocean. Paleoceanography, 2017, 32, 484-497.	3.0	47
34	Reduced ENSO variability at the LGM revealed by an isotopeâ€enabled Earth system model. Geophysical Research Letters, 2017, 44, 6984-6992.	1.5	71
35	Detecting shifts in tropical moisture imbalances with satelliteâ€derived isotope ratios in water vapor. Journal of Geophysical Research D: Atmospheres, 2017, 122, 5763-5779.	1.2	19
36	Congo Basin precipitation: Assessing seasonality, regional interactions, and sources of moisture. Journal of Geophysical Research D: Atmospheres, 2017, 122, 6882-6898.	1.2	95

#	Article	IF	CITATIONS
37	The Impact of Error Accounting in a Bayesian Approach to Calibrating Modeled Turbulent Fluxes in an Open-Canopy Forest. Journal of Hydrometeorology, 2017, 18, 2029-2042.	0.7	1
38	Investigating the Direct Meltwater Effect in Terrestrial Oxygenâ€Isotope Paleoclimate Records Using an Isotopeâ€Enabled Earth System Model. Geophysical Research Letters, 2017, 44, 12,501.	1.5	10
39	Evaluating hydrological processes in the <scp>C</scp> ommunity <scp>A</scp> tmosphere <scp>M</scp> odel <scp>V</scp> ersion 5 (<scp>C</scp> AM5) using stable isotope ratios of water. Journal of Advances in Modeling Earth Systems, 2017, 9, 949-977.	1.3	93
40	Evaluation of modeled landâ€atmosphere exchanges with a comprehensive water isotope fractionation scheme in version 4 of the <scp>C</scp> ommunity <scp>L</scp> and <scp>M</scp> odel. Journal of Advances in Modeling Earth Systems, 2017, 9, 978-1001.	1.3	92
41	Modeling precipitation <i>δ</i> ¹⁸ O variability in East Asia since the Last Glacial Maximum: temperature and amount effects across different timescales. Climate of the Past, 2016, 12, 2077-2085.	1.3	6
42	Paired stable isotopologues in precipitation and vapor: A case study of the amount effect within western tropical Pacific storms. Journal of Geophysical Research D: Atmospheres, 2016, 121, 3290-3303.	1.2	53
43	A mathematical framework for analysis of water tracers: Part 1: Development of theory and application to the preindustrial mean state. Journal of Advances in Modeling Earth Systems, 2016, 8, 991-1013.	1.3	27
44	Convergent approaches to determine an ecosystem's transpiration fraction. Global Biogeochemical Cycles, 2016, 30, 933-951.	1.9	75
45	A Mathematical Framework for Analysis of Water Tracers. Part II: Understanding Large-Scale Perturbations in the Hydrological Cycle due to CO2 Doubling. Journal of Climate, 2016, 29, 6765-6782.	1.2	20
46	Understanding the temporal slope of the temperatureâ€water isotope relation during the deglaciation using isoCAM3: The slope equation. Journal of Geophysical Research D: Atmospheres, 2016, 121, 10,342.	1.2	10
47	The last millennium climate reanalysis project: Framework and first results. Journal of Geophysical Research D: Atmospheres, 2016, 121, 6745-6764.	1.2	166
48	Greater aerial moisture transport distances with warming amplify interbasin salinity contrasts. Geophysical Research Letters, 2016, 43, 8677-8684.	1.5	17
49	Characterizing seawater oxygen isotopic variability in a regional ocean modeling framework: Implications for coral proxy records. Paleoceanography, 2015, 30, 1573-1593.	3.0	23
50	D/H isotope ratios in the global hydrologic cycle. Geophysical Research Letters, 2015, 42, 5042-5050.	1.5	56
51	Precipitation efficiency derived from isotope ratios in water vapor distinguishes dynamical and microphysical influences on subtropical atmospheric constituents. Journal of Geophysical Research D: Atmospheres, 2015, 120, 9119-9137.	1.2	24
52	The stability and calibration of water vapor isotope ratio measurements during long-term deployments. Atmospheric Measurement Techniques, 2015, 8, 4521-4538.	1.2	46
53	SPEEDYâ€IER: A fast atmospheric GCM with water isotope physics. Journal of Geophysical Research D: Atmospheres, 2015, 120, 73-91.	1.2	40
54	Hydrologic connectivity constrains partitioning of global terrestrial water fluxes. Science, 2015, 349, 175-177.	6.0	467

#	Article	IF	CITATIONS
55	The response of the18O/16O composition of atmospheric CO2to changes in environmental conditions. Journal of Geophysical Research G: Biogeosciences, 2014, 119, 55-79.	1.3	6
56	The role of soil processes in <i>δ</i> ¹⁸ 0 terrestrial climate proxies. Global Biogeochemical Cycles, 2014, 28, 239-252.	1.9	16
57	Constraining surface carbon fluxes using in situ measurements of carbonyl sulfide and carbon dioxide. Global Biogeochemical Cycles, 2014, 28, 161-179.	1.9	57
58	Role of continental recycling in intraseasonal variations of continental moisture as deduced from model simulations and water vapor isotopic measurements. Water Resources Research, 2013, 49, 4136-4156.	1.7	96
59	Characterizing moisture exchange between the Hawaiian convective boundary layer and free troposphere using stable isotopes in water. Journal of Geophysical Research D: Atmospheres, 2013, 118, 8208-8221.	1.2	48
60	Characteristics of tropical and subtropical atmospheric moistening derived from Lagrangian mass balance constrained by measurements of HDO and H ₂ O. Journal of Geophysical Research D: Atmospheres, 2013, 118, 54-72.	1.2	15
61	Comparison of precipitation isotope variability across the tropical Pacific in observations and SWING2 model simulations. Journal of Geophysical Research D: Atmospheres, 2013, 118, 5867-5892.	1.2	58
62	Influence of Last Glacial Maximum boundary conditions on the global water isotope distribution in an atmospheric general circulation model. Climate of the Past, 2013, 9, 789-809.	1.3	24
63	Profiles of CH ₄ , HDO, H ₂ O, and N ₂ O with improved lower tropospheric vertical resolution from Aura TES radiances. Atmospheric Measurement Techniques, 2012, 5, 397-411.	1.2	141
64	Pairing Measurements of the Water Vapor Isotope Ratio with Humidity to Deduce Atmospheric Moistening and Dehydration in the Tropical Midtroposphere. Journal of Climate, 2012, 25, 4476-4494.	1.2	142
65	Younger Dryas cooling and the Greenland climate response to CO ₂ . Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 11101-11104.	3.3	85
66	Processâ€evaluation of tropospheric humidity simulated by general circulation models using water vapor isotopologues: 1. Comparison between models and observations. Journal of Geophysical Research, 2012, 117, .	3.3	114
67	Processâ€evaluation of tropospheric humidity simulated by general circulation models using water vapor isotopic observations: 2. Using isotopic diagnostics to understand the mid and upper tropospheric moist bias in the tropics and subtropics. Journal of Geophysical Research, 2012, 117, .	3.3	77
68	The moisture source sequence for the Maddenâ€Julian Oscillation as derived from satellite retrievals of HDO and H ₂ O. Journal of Geophysical Research, 2012, 117, .	3.3	29
69	A test of the advectionâ€condensation model for subtropical water vapor using stable isotopologue observations from Mauna Loa Observatory, Hawaii. Journal of Geophysical Research, 2012, 117, .	3.3	24
70	Intraseasonal isotopic variation associated with the Madden-Julian Oscillation. Journal of Geophysical Research, 2011, 116, n/a-n/a.	3.3	112
71	Influences of the hydrological cycle on observed interannual variations in atmospheric CO ¹⁸ O. Journal of Geophysical Research, 2011, 116, .	3.3	6
72	Properties of air mass mixing and humidity in the subtropics from measurements of the D/H isotope ratio of water vapor at the Mauna Loa Observatory. Journal of Geophysical Research, 2011, 116, n/a-n/a.	3.3	85

#	Article	IF	CITATIONS
73	Estimate of bias in Aura TES HDO/H ₂ O profiles from comparison of TES and in situ HDO/H ₂ O measurements at the Mauna Loa observatory. Atmospheric Chemistry and Physics, 2011, 11, 4491-4503.	1.9	59
74	Relating tropical ocean clouds to moist processes using water vapor isotope measurements. Atmospheric Chemistry and Physics, 2011, 11, 741-752.	1.9	45
75	An introduction to stable water isotopes in climate models: benefits of forward proxy modelling for paleoclimatology. Climate of the Past, 2010, 6, 115-129.	1.3	141
76	Comprehensive Dynamical Models of Global and Regional Water Isotope Distributions. , 2010, , 195-219.		54
77	Understanding the Sahelian water budget through the isotopic composition of water vapor and precipitation. Journal of Geophysical Research, 2010, 115, .	3.3	95
78	Modeling the influence of a reduced equator-to-pole sea surface temperature gradient on the distribution of water isotopes in the Early/Middle Eocene. Earth and Planetary Science Letters, 2010, 298, 57-65.	1.8	57
79	Novel Approaches for Monitoring of Water Vapor Isotope Ratios: Plants, Lasers and Satellites. , 2010, , 71-88.		14
80	Demonstration of highâ€precision continuous measurements of water vapor isotopologues in laboratory and remote field deployments using wavelengthâ€scanned cavity ringâ€down spectroscopy (WS RDS) technology. Rapid Communications in Mass Spectrometry, 2009, 23, 2534-2542.	0.7	273
81	Kink in the thermometer. Nature, 2009, 462, 295-296.	13.7	3
82	Analysis of the summertime buildup of tropospheric ozone abundances over the Middle East and North Africa as observed by the Tropospheric Emission Spectrometer instrument. Journal of Geophysical Research, 2009, 114, .	3.3	72
83	Isoscapes to Address Largeâ€Scale Earth Science Challenges. Eos, 2009, 90, 109-110.	0.1	45
84	The influence of midlatitude and tropical overturning circulation on the isotopic composition of atmospheric water vapor and Antarctic precipitation. Journal of Geophysical Research, 2008, 113, .	3.3	66
85	Comparison of atmospheric hydrology over convective continental regions using water vapor isotope measurements from space. Journal of Geophysical Research, 2008, 113, .	3.3	66
86	Historical isotope simulation using Reanalysis atmospheric data. Journal of Geophysical Research, 2008, 113, .	3.3	328
87	A Review of Antarctic Surface Snow Isotopic Composition: Observations, Atmospheric Circulation, and Isotopic Modeling*. Journal of Climate, 2008, 21, 3359-3387.	1.2	344
88	Global satellite measurements of HDO and implications for understanding the transport of water vapour into the stratosphere. Quarterly Journal of the Royal Meteorological Society, 2007, 133, 1459-1471.	1.0	54
89	Importance of rain evaporation and continental convection in the tropical water cycle. Nature, 2007, 445, 528-532.	13.7	401
90	Modeling δ180 in tropical precipitation and the surface ocean for present-day climate. Journal of Geophysical Research, 2006, 111, .	3.3	45

#	Article	IF	CITATIONS
91	Tropospheric Emission Spectrometer observations of the tropospheric HDO/H2O ratio: Estimation approach and characterization. Journal of Geophysical Research, 2006, 111, .	3.3	167
92	Sea ice control of water isotope transport to Antarctica and implications for ice core interpretation. Journal of Geophysical Research, 2004, 109, .	3.3	82
93	Associations between δ180 of Water and Climate Parameters in a Simulation of Atmospheric Circulation for 1979–95. Journal of Climate, 2002, 15, 3150-3169.	1.2	184
94	Annular variations in moisture transport mechanisms and the abundance of δ18O in Antarctic snow. Journal of Geophysical Research, 2002, 107, ACL 3-1.	3.3	86
95	Atmospheric signals and characteristics of accumulation in Dronning Maud Land, Antarctica. Journal of Geophysical Research, 1999, 104, 19191-19211.	3.3	104