
Naoki Kamiya

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6531383/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Automated segmentation of psoas major muscle in X-ray CT images by use of a shape model: preliminary study. Radiological Physics and Technology, 2012, 5, 5-14.	1.9	29
2	Fully automatic segmentation of paraspinal muscles from 3D torso CT images via multi-scale iterative random forest classifications. International Journal of Computer Assisted Radiology and Surgery, 2018, 13, 1697-1706.	2.8	23
3	Automated segmentation of recuts abdominis muscle using shape model in X-ray CT images. , 2011, 2011, 7993-6.		10
4	Deep Learning Technique for Musculoskeletal Analysis. Advances in Experimental Medicine and Biology, 2020, 1213, 165-176.	1.6	10
5	Automated Recognition of Erector Spinae Muscles and Their Skeletal Attachment Region via Deep Learning in Torso CT Images. Lecture Notes in Computer Science, 2019, , 1-10.	1.3	7
6	Automated recognition of the psoas major muscles on X-ray CT images. , 2009, 2009, 3557-60.		6
7	Muscle Segmentation for Orthopedic Interventions. Advances in Experimental Medicine and Biology, 2018, 1093, 81-91.	1.6	6
8	Surface Muscle Segmentation Using 3D U-Net Based on Selective Voxel Patch Generation in Whole-Body CT Images. Applied Sciences (Switzerland), 2020, 10, 4477.	2.5	5
9	Automated analysis of whole skeletal muscle for muscular atrophy detection of ALS in whole-body CT images: preliminary study. , 2017, , .		5
10	Automatic Classification of Hemp and Cotton in Digital Macro Photography using VGG-16 for Nondestructive Paper Analysis. , 2019, , .		3
11	Model-Based Approach to Recognize the Rectus Abdominis Muscle in CT Images. IEICE Transactions on Information and Systems, 2013, E96.D, 869-871.	0.7	2
12	Automated recognition of the iliac muscle and modeling of muscle fiber direction in torso CT images. , 2016, , .		2
13	Investigation of the effect of image resolution on automatic classification of mammary gland density in mammography images using deep learning. , 2019, , .		2
14	Understanding Medical Images Based on Computational Anatomy Models. , 2017, , 151-284.		2
15	Initial study on the classification of amyotrophic diseases using texture analysis and deep learning in whole-body CT images. , 2019, , .		2
16	Automatic Segmentation of Supraspinatus Muscle via Bone-Based Localization in Torso Computed Tomography Images Using U-Net. IEEE Access, 2021, 9, 155555-155563.	4.2	2
17	Relationship between number of annotations and accuracy in segmentation of the erector spinae muscle using Bayesian U-Net in torso CT images. , 2021, , .		1
18	Initial Study on Multi-Scale Patch-Based Classification of Paper Fibers Based on EfficientNet Using Consumer Digital Camera. , 2021, , .		1

0

#	Article	IF	CITATIONS
19	Initial Study on Classification of Japanese Paper by Kozo Name using EfficientNet with Digital Camera. , 2020, , .		1
20	A model based method for recognizing psoas major muscles in torso CT images. , 2010, , .		0
21	Quality Control of an Ultrasonographic System for Breast Cancer Screening Using Phantoms. Nihon Nyugan Kenshin Gakkaishi (Journal of Japan Association of Breast Cancer Screening), 2012, 21, 232-236.	0.1	0
22	Development of a Quality Control Tool for Mass Target Image Analysis of Phantoms for Breast Ultrasonography. Nihon Nyugan Kenshin Gakkaishi (Journal of Japan Association of Breast Cancer) Tj ETQq0 0 0 r	gBT.‡Overl	o ck 10 Tf 50
23	Development of Multiple Skeletal Muscle Recognition Technique in the Thoracoabdominal Region for Respiratory Muscle Function Analysis. , 2022, , 241-245.		0

Function Integrated Diagnostic Assistance Based on MCA Models. , 2022, , 67-77.