
Martin J Pearson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6531369/publications.pdf Version: 2024-02-01

4

 Sciences, 2011, 366, 3085-3096. Whiskerbot: A Robotic Active Touch System Modeled on the Rat Whisker Sensory System. Adaptive Behavior, 2007, 15, 223-240. Tactile Discrimination Using Active Whisker Sensors. IEEE Sensors Journal, 2012, 12, 350-362. Contact type dependency of texture classification inÂaÂwhiskered mobile robot. Autonomous Robots, 2009, 26, 223-239. Tactile SLAM with a biomimetic whiskered robot. , 2012, ,. Adaptive Cancelation of Self-Generated Sensory Signals in a Whisking Robot. IEEE Transactions on Robotics, 2010, 26, 1065-1076. 	4.0	01
 Behavior, 2007, 15, 223-240. Tactile Discrimination Using Active Whisker Sensors. IEEE Sensors Journal, 2012, 12, 350-362. Contact type dependency of texture classification inÂaÂwhiskered mobile robot. Autonomous Robots, 2009, 26, 223-239. Tactile SLAM with a biomimetic whiskered robot. , 2012, , . Adaptive Cancelation of Self-Generated Sensory Signals in a Whisking Robot. IEEE Transactions on Robotics, 2010, 26, 1065-1076. An Internal Model Architecture for Novelty Detection: Implications for Cerebellar and Collicular 		91
 Contact type dependency of texture classification inÂaÂwhiskered mobile robot. Autonomous Robots, 2009, 26, 223-239. Tactile SLAM with a biomimetic whiskered robot., 2012, , . Adaptive Cancelation of Self-Generated Sensory Signals in a Whisking Robot. IEEE Transactions on Robotics, 2010, 26, 1065-1076. An Internal Model Architecture for Novelty Detection: Implications for Cerebellar and Collicular 	1.9	77
 ⁴ 2009, 26, 223-239. ⁵ Tactile SLAM with a biomimetic whiskered robot. , 2012, , . ⁶ Adaptive Cancelation of Self-Generated Sensory Signals in a Whisking Robot. IEEE Transactions on Robotics, 2010, 26, 1065-1076. ⁷ An Internal Model Architecture for Novelty Detection: Implications for Cerebellar and Collicular 	4.7	62
 Adaptive Cancelation of Self-Generated Sensory Signals in a Whisking Robot. IEEE Transactions on Robotics, 2010, 26, 1065-1076. An Internal Model Architecture for Novelty Detection: Implications for Cerebellar and Collicular 	4.8	45
 Robotics, 2010, 26, 1065-1076. An Internal Model Architecture for Novelty Detection: Implications for Cerebellar and Collicular 		31
	10.3	29
	2.5	28
8 Cerebellar-inspired algorithm for adaptive control of nonlinear dielectric elastomer-based artificial muscle. Journal of the Royal Society Interface, 2016, 13, 20160547.	3.4	26
9 Fast, Flexible Closed-Loop Feedback: Tracking Movement in "Real-Millisecond-Time― ENeuro, 2019, 6, ENEURO.0147-19.2019.	1.9	20
Simultaneous localisation and mapping on a multi-degree of freedom biomimetic whiskered robot. , 2013, , .		19
11 Whisker-object contact speed affects radial distance estimation. , 2010, , .		18
Multimodal Representation Learning for Place Recognition Using Deep Hebbian Predictive Coding. Frontiers in Robotics and Al, 2021, 8, 732023.	3.2	15
Naive Bayes novelty detection for a moving robot with whiskers. , 2010, , .		12
Biohybrid Control of General Linear Systems Using the Adaptive Filter Model of Cerebellum. Frontiers in Neurorobotics, 2015, 9, 5.	2.8	11
¹⁵ ViTa-SLAM: A Bio-inspired Visuo-Tactile SLAM for Navigation while Interacting with Aliased Environments. , 2019, , .		11
16 Contact sensing in a bio-inspired whisker driven by electroactive polymer artificial muscles. , 2013, , .		7
Active Whisker Placement and Exploration For Rapid Object Recognition. , 2019, , .		5

18 Whiskered texture classification with uncertain contact pose geometry. , 2012, , .

2

MARTIN J PEARSON

#	Article	IF	CITATIONS
19	Audio Localization for Robots Using Parallel Cerebellar Models. IEEE Robotics and Automation Letters, 2018, 3, 3185-3192.	5.1	3
20	A multizone cerebellar chip for bioinspired adaptive robot control and sensorimotor processing. Journal of the Royal Society Interface, 2021, 18, 20200750.	3.4	3
21	Performance evaluation using Markov model for a novel approach in Ethernet based embedded networked control communication. , 2016, , .		2
22	A Spiking Neural Network Model of Rodent Head Direction Calibrated With Landmark Free Learning. Frontiers in Neurorobotics, 2022, 16, .	2.8	2