Carlos A Valdez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6531101/publications.pdf

Version: 2024-02-01

304602 302012 1,639 54 22 39 citations h-index g-index papers 56 56 56 2312 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Gas Chromatography-Mass Spectrometry Analysis of Synthetic Opioids Belonging to the Fentanyl Class: A Review. Critical Reviews in Analytical Chemistry, 2022, 52, 1938-1968.	1.8	29
2	Trimethyloxonium-mediated methylation strategies for the rapid and simultaneous analysis of chlorinated phenols in various soils by electron impact gas chromatography–mass spectrometry. Scientific Reports, 2022, 12, 1401.	1.6	3
3	Extraction of 197mHg with TIBPS in HNO3 and HCl media. Journal of Radioanalytical and Nuclear Chemistry, 2022, 331, 1629.	0.7	O
4	Unsaturated Sulfur Crown Ethers Can Extract Mercury(II) and Show Promise for Future Copernicium(II) Studies: A Combined Experimental and Computational Study. Inorganic Chemistry, 2022, 61, 807-817.	1.9	1
5	Countermeasures for Preventing and Treating Opioid Overdose. Clinical Pharmacology and Therapeutics, 2021, 109, 578-590.	2.3	38
6	Acylation as a successful derivatization strategy for the analysis of pinacolyl alcohol in a glycerol-rich matrix by GC-MS: application during an OPCW Proficiency Test. Analytical and Bioanalytical Chemistry, 2021, 413, 3145-3151.	1.9	5
7	Trocylation of 3â€quinuclidinol, a key marker for the chemical warfare agent 3â€quinuclidinyl benzilate, for its enhanced detection at low levels in complex soil matrices by electron ionization gas chromatography–mass spectrometry. Rapid Communications in Mass Spectrometry, 2021, 35, e9123.	0.7	3
8	Development of a CNS-permeable reactivator for nerve agent exposure: an iterative, multi-disciplinary approach. Scientific Reports, 2021, 11, 15567.	1.6	8
9	Analysis of Organophosphorus-Based Nerve Agent Degradation Products by Gas Chromatography-Mass Spectrometry (GC-MS): Current Derivatization Reactions in the Analytical Chemist's Toolbox. Molecules, 2021, 26, 4631.	1.7	21
10	Structural modification of fentanyls for their retrospective identification by gas chromatographic analysis using chloroformate chemistry. Scientific Reports, 2021, 11, 22489.	1.6	4
11	Transactinide studies with sulfur macrocyclic extractant using mercury. Journal of Radioanalytical and Nuclear Chemistry, 2020, 326, 215-222.	0.7	5
12	Autonomously Responsive Membranes for Chemical Warfare Protection. Advanced Functional Materials, 2020, 30, 2000258.	7.8	32
13	Methylation protocol for the retrospective detection of isopropyl-, pinacolyl- and cyclohexylmethylphosphonic acids, indicative markers for the nerve agents sarin, soman and cyclosarin, at low levels in soils using El-GC–MS. Science of the Total Environment, 2019, 683, 175-184.	3.9	26
14	Carbene-based Difluoromethylation of Bisphenols: Application to the Instantaneous Tagging of Bisphenol A in Spiked Soil for Its Detection and Identification by Electron Ionization Gas Chromatography-Mass Spectrometry. Scientific Reports, 2019, 9, 17360.	1.6	6
15	Assessing the reliability of the NIST library during routine GCâ€MS analyses: Structure and spectral data corroboration for 5,5â€diphenylâ€1,3â€dioxolanâ€4â€one during a recent OPCW proficiency test. Journal of Mass Spectrometry, 2018, 53, 419-422.	0.7	11
16	Part 2: Forensic attribution profiling of Russian VX in food using liquid chromatography-mass spectrometry. Talanta, 2018, 186, 597-606.	2.9	26
17	Statistical analysis of the chemical attribution signatures of 3-methylfentanyl and its methods of production. Talanta, 2018, 186, 645-654.	2.9	19
18	Efficient derivatization of methylphosphonic and aminoethylsulfonic acids related to nerve agents simultaneously in soils using trimethyloxonium tetrafluoroborate for their enhanced, qualitative detection and identification by EI-GC–MS and GC–FPD. Forensic Science International, 2018, 288, 159-168.	1.3	23

#	Article	IF	Citations
19	Part 3: Solid phase extraction of Russian VX and its chemical attribution signatures in food matrices and their detection by GC-MS and LC-MS. Talanta, 2018, 186, 607-614.	2.9	23
20	Part 1: Tracing Russian VX to its synthetic routes by multivariate statistics of chemical attribution signatures. Talanta, 2018, 186, 586-596.	2.9	31
21	Analysis of chemical warfare agents by gas chromatography-mass spectrometry: methods for their direct detection and derivatization approaches for the analysis of their degradation products. Reviews in Analytical Chemistry, 2018, 37, .	1.5	61
22	Predicting a Drug's Membrane Permeability: A Computational Model Validated With <i>in Vitro</i> Permeability Assay Data. Journal of Physical Chemistry B, 2017, 121, 5228-5237.	1.2	185
23	Simultaneous and Practical Difluoromethylation of Triclosan, 2,4,6-Trichlorophenol and Pentachlorophenol in Soils for their Qualitative Detection by Electron Ionization GC-MS. Analytical Chemistry Letters, 2017, 7, 11-19.	0.4	3
24	The biodistribution and pharmacokinetics of the oxime acetylcholinesterase reactivator RS194B in guinea pigs. Chemico-Biological Interactions, 2017, 277, 159-167.	1.7	20
25	Kinetic Studies on the Green and Practical Iodide-mediated Dealkylation of Tributylphosphate (TBP) using Nuclear Magnetic Resonance Spectroscopy. Analytical Chemistry Letters, 2017, 7, 470-478.	0.4	0
26	The Total Synthesis of (\hat{a}^2) -Tetrodotoxin: A Historical Account. Studies in Natural Products Chemistry, 2016, 47, 235-260.	0.8	2
27	Effective methylation of phosphonic acids related to chemical warfare agents mediated by trimethyloxonium tetrafluoroborate for their qualitative detection and identification by gas chromatography-mass spectrometry. Analytica Chimica Acta, 2016, 933, 134-143.	2.6	31
28	Solution-State Structure and Affinities of Cyclodextrin:Fentanyl Complexes by Nuclear Magnetic Resonance Spectroscopy and Molecular Dynamics Simulation. Journal of Physical Chemistry B, 2016, 120, 2423-2433.	1.2	11
29	Encapsulated liquid sorbents for carbon dioxide capture. Nature Communications, 2015, 6, 6124.	5.8	161
30	Chemical tagging of chlorinated phenols for their facile detection and analysis by NMR spectroscopy. Analytical and Bioanalytical Chemistry, 2015, 407, 3539-3543.	1.9	6
31	Kinetics and speciation of paraoxon hydrolysis by zinc(II)–azamacrocyclic catalysts. Inorganica Chimica Acta, 2015, 436, 123-131.	1.2	17
32	Developing an approach for first-principles catalyst design: application to carbon-capture catalysis. Acta Crystallographica Section C, Structural Chemistry, 2014, 70, 123-131.	0.2	12
33	Derivatization of pinacolyl alcohol with phenyldimethylchlorosilane for enhanced detection by gas chromatography–mass spectrometry. Analytical and Bioanalytical Chemistry, 2014, 406, 5231-5234.	1.9	18
34	Rapid and mild silylation of <i>β</i> à€amino alcohols at room temperature mediated by <i>N</i> à€methylimidazole for enhanced detectability by gas chromatography/electron ionization mass spectrometry. Rapid Communications in Mass Spectrometry, 2014, 28, 2217-2221.	0.7	12
35	An Efficient, Optimized Synthesis of Fentanyl and Related Analogs. PLoS ONE, 2014, 9, e108250.	1.1	65
36	Deterministic Control over High-Z Doping of Polydicyclopentadiene-Based Aerogel Coatings. ACS Applied Materials & Doping of Polydicyclopentadiene-Based Aerogel Coatings. ACS Applied Materials & Doping of Polydicyclopentadiene-Based Aerogel Coatings. ACS Applied Materials & Doping of Polydicyclopentadiene-Based Aerogel Coatings. ACS Applied Materials & Doping of Polydicyclopentadiene-Based Aerogel Coatings. ACS Applied Materials & Doping of Polydicyclopentadiene-Based Aerogel Coatings. ACS Applied Materials & Doping of Polydicyclopentadiene-Based Aerogel Coatings. ACS Applied Materials & Doping of Polydicyclopentadiene-Based Aerogel Coatings. ACS Applied Materials & Doping of Polydicyclopentadiene-Based Aerogel Coatings. ACS Applied Materials & Doping of Polydicyclopentadiene-Based Aerogel Coatings.	4.0	10

#	Article	IF	CITATIONS
37	Computational Analysis of a Zn-Bound Tris(imidazolyl) Calix[6]arene Aqua Complex: Toward Incorporating Second-Coordination Sphere Effects into Carbonic Anhydrase Biomimetics. Journal of Chemical Theory and Computation, 2013, 9, 1320-1327.	2.3	8
38	Evaluation of a Carbonic Anhydrase Mimic for Industrial Carbon Capture. Environmental Science & Environmental & Enviro	4.6	68
39	Comparison and Analysis of Zinc and Cobalt-Based Systems as Catalytic Entities for the Hydration of Carbon Dioxide. PLoS ONE, 2013, 8, e66187.	1.1	13
40	Mechanically robust 3D graphene macroassembly with high surface area. Chemical Communications, 2012, 48, 8428.	2.2	227
41	<sup>31 $<$ /sup>P-Edited Diffusion-Ordered $<$ sup>1 $<$ /sup>H NMR Spectroscopy for the Spectral Isolation and Identification of Organophosphorus Compounds Related to Chemical Weapons Agents and Their Degradation Products. Analytical Chemistry, 2012, 84, 10478-10484.	3.2	9
42	Exploration of the versatility of ring opening metathesis polymerization: an approach for gaining access to low density polymeric aerogels. RSC Advances, 2012, 2, 8672.	1.7	32
43	NMR spectroscopic investigation of inclusion complexes between cyclodextrins and the neurotoxin tetramethylenedisulfotetramine. Magnetic Resonance in Chemistry, 2012, 50, 229-235.	1.1	8
44	Toward a Small Molecule, Biomimetic Carbonic Anhydrase Model: Theoretical and Experimental Investigations of a Panel of Zinc(II) Aza-Macrocyclic Catalysts. Inorganic Chemistry, 2012, 51, 6803-6812.	1.9	82
45	Designing small-molecule catalysts for CO2 capture. Energy Procedia, 2011, 4, 817-823.	1.8	18
46	Modeling, synthesis and characterization of zinc containing carbonic anhydrase active site mimics. Energy Procedia, 2011, 4, 2090-2095.	1.8	27
47	Tailored synthesis of nitric oxide-releasing polyurethanes using O2-protected diazeniumdiolated chain extenders. Journal of Materials Chemistry, 2010, 20, 3107.	6.7	26
48	Synthesis and Electrochemistry of 2-Ethenyl and 2-Ethanyl Derivatives of 5-Nitroimidazole and Antimicrobial Activity against <i>Giardia lamblia</i> Journal of Medicinal Chemistry, 2009, 52, 4038-4053.	2.9	70
49	Hydrolytic Reactivity Trends among Potential Prodrugs of the O ² -Glycosylated Diazeniumdiolate Family. Targeting Nitric Oxide to Macrophages for Antileishmanial Activity. Journal of Medicinal Chemistry, 2008, 51, 3961-3970.	2.9	40
50	Diazeniumdiolate Ions as Leaving Groups in Anomeric Displacement Reactions:Â A Protectionâ^'Deprotection Strategy for Ionic Diazeniumdiolates. Journal of the American Chemical Society, 2005, 127, 14188-14189.	6.6	27
51	Sugar-Modified Conjugated Diene Analogues of Adenosine and Uridine:Â Synthesis, Interaction withS-Adenosyl-I-homocysteine Hydrolase, and Antiviral and Cytostatic Effects. Journal of Medicinal Chemistry, 2002, 45, 2651-2658.	2.9	27
52	RHODIUM(I)-CATALYZED REGIO- AND STEREOSELECTIVE CHLOROESTERIFICATION OF FURANOSE-DERIVED TERMINAL ALKYNES WITH ETHYL CHLOROFORMATE. Journal of Carbohydrate Chemistry, 2001, 20, 71-79.	0.4	5
53	Rearrangement of Nitropyridylidenemalonate 1-Oxides. A Novel Method for the Synthesis of Aminopyridine Derivatives. Tetrahedron, 2000, 56, 7667-7671.	1.0	7
54	Doubly Homologated Dihalovinyl and Acetylene Analogues of Adenosine:Â Synthesis, Interaction withS-Adenosyl-I-homocysteine Hydrolase, and Antiviral and Cytostatic Effects. Journal of Medicinal Chemistry, 2000, 43, 1180-1186.	2.9	17