
Changjin Zhu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6531001/publications.pdf Version: 2024-02-01

Снансим 7ни

#	Article	IF	CITATIONS
1	β-Aldehyde ketones as dual inhibitors of aldose reductase and α-glucosidase with antioxidant properties. New Journal of Chemistry, 2022, 46, 6165-6173.	2.8	0
2	ldentification of 9 <i>H</i> â€purinâ€6â€amine derivatives as novel aldose reductase inhibitors for the treatment of diabetic complications. Archiv Der Pharmazie, 2022, , e2200043.	4.1	2
3	Novel Hydroxychalcone-Based Dual Inhibitors of Aldose Reductase and α-Glucosidase as Potential Therapeutic Agents against Diabetes Mellitus and Its Complications. Journal of Medicinal Chemistry, 2022, 65, 9174-9192.	6.4	7
4	Multifunctional agents based on benzoxazolone as promising therapeutic drugs for diabetic nephropathy. European Journal of Medicinal Chemistry, 2021, 215, 113269.	5.5	6
5	Design of Benzothiazoloneâ€Based Carboxylic Acid Aldose Reductase Inhibitors. ChemistrySelect, 2021, 6, 4874-4880.	1.5	1
6	lsatin derivatives as a new class of aldose reductase inhibitors with antioxidant activity. Medicinal Chemistry Research, 2021, 30, 1588-1602.	2.4	4
7	(5-Hydroxy-4-oxo-2-styryl-4H-pyridin-1-yl)-acetic Acid Derivatives as Multifunctional Aldose Reductase Inhibitors. Molecules, 2020, 25, 5135.	3.8	5
8	Dihydrobenzoxazinone derivatives as aldose reductase inhibitors with antioxidant activity. Bioorganic and Medicinal Chemistry, 2020, 28, 115699.	3.0	10
9	Organocatalytic asymmetric synthesis of arylindolyl indolin-3-ones with both axial and central chirality. Chemical Communications, 2020, 56, 12648-12651.	4.1	30
10	Novel quinolin-4(1H)-one derivatives as multi-effective aldose reductase inhibitors for treatment of diabetic complications: Synthesis, biological evaluation, and molecular modeling studies. Bioorganic and Medicinal Chemistry Letters, 2020, 30, 127101.	2.2	4
11	Novel 3,4-dihydroquinolin-2(1H)-one derivatives as dual inhibitor targeting AKR1B1/ROS for treatment of diabetic complications: Design, synthesis and biological evaluation. Bioorganic Chemistry, 2020, 105, 104428.	4.1	6
12	Novel 2-phenoxypyrido[3,2- <i>b</i>]pyrazin-3(4 <i>H</i>)-one derivatives as potent and selective aldose reductase inhibitors with antioxidant activity. Journal of Enzyme Inhibition and Medicinal Chemistry, 2019, 34, 1368-1372.	5.2	10
13	Synthesis of Sulfonated Poly(arylene ether)s in a Oneâ€Pot Polymerization Process and Their Nafionâ€Blend Membranes for Proton Exchange Membrane Fuel Cell Applications. ChemistrySelect, 2019, 4, 7577-7584.	1.5	2
14	Superbase-promoted selective carbon–carbon bond cleavage driven by aromatization. Organic and Biomolecular Chemistry, 2019, 17, 4984-4989.	2.8	2
15	Designing of acyl sulphonamide based quinoxalinones as multifunctional aldose reductase inhibitors. Bioorganic and Medicinal Chemistry, 2019, 27, 1658-1669.	3.0	29
16	Axially Chiral Cyclic Phosphoric Acid Enabled Enantioselective Sequential Additions. Organic Letters, 2019, 21, 2498-2503.	4.6	25
17	Identification of quinoxalin-2(1H)-one derivatives as a novel class of multifunctional aldose reductase inhibitors. Future Medicinal Chemistry, 2019, 11, 2989-3004.	2.3	12
18	Copper-Catalyzed Cascade Synthesis of [1,2,4]-Triazoloquinazolinones. Synlett, 2018, 29, 1395-1399.	1.8	4

CHANGJIN ZHU

#	Article	IF	CITATIONS
19	Axially Chiral Cyclic Diphosphine Ligand-Enabled Palladium-Catalyzed Intramolecular Asymmetric Hydroarylation. IScience, 2018, 10, 11-22.	4.1	12
20	Highly sulfonated poly(ether ether ketone) grafted on graphene oxide as nanohybrid proton exchange membrane applied in fuel cells. Electrochimica Acta, 2018, 283, 428-437.	5.2	52
21	Controlling the degree of sulfonation and its impact on hybrid cross-linked network based polyphosphazene grafted butylphenoxy as proton exchange membrane. International Journal of Hydrogen Energy, 2018, 43, 15466-15480.	7.1	16
22	Sulfonated graphene oxideâ€doped proton conductive membranes based on polymer blends of highly sulfonated poly(ether ether ketone) and sulfonated polybenzimidazole. Journal of Applied Polymer Science, 2018, 135, 46547.	2.6	13
23	Synthesis and structure–activity relationship studies of phenolic hydroxyl derivatives based on quinoxalinone as aldose reductase inhibitors with antioxidant activity. Bioorganic and Medicinal Chemistry Letters, 2017, 27, 887-892.	2.2	20
24	Novel Proton Conducting Membranes from the Combination of Sulfonated Polymers of Polyetheretherketones and Polyphosphazenes Doped with Sulfonated Singleâ€Walled Carbon Nanotubes. Macromolecular Materials and Engineering, 2017, 302, 1700095.	3.6	6
25	Novel proton conducting membranes based on copolymers containing hydroxylated poly(ether ether) Tj ETQq1 🤅	1 0,784314 2.6	4 rgBT /Overl
26	Novel proton conducting membranes based on cross-linked sulfonated polyphosphazenes and poly(ether ether ketone). Journal of Membrane Science, 2017, 536, 1-10.	8.2	39
27	Synthesis of novel copolymers based on p-methylstyrene, N,N-butylvinylimidazolium and polybenzimidazole as highly conductive anion exchange membranes for fuel cell application. RSC Advances, 2017, 7, 47806-47817.	3.6	9
28	Copper atalyzed Câ^'H Activation of Substituted Pyridines Leading to Imidazopyridine Derivatives via Selfâ€Redox of the Substrates. Asian Journal of Organic Chemistry, 2017, 6, 1551-1555.	2.7	8
29	Functionalization of Carbon Nanotubes by a Facile Chemical Method and Its Application in Anti-Diabetic Activity. Journal of Nanoscience and Nanotechnology, 2017, 17, 8557-8561.	0.9	11
30	Synthesis of benzothiadiazine derivatives exhibiting dual activity as aldose reductase inhibitors and antioxidant agents. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 2880-2885.	2.2	5
31	Highly conductive proton exchange membranes from sulfonated polyphosphazene-graft-copolystyrenes doped with sulfonated single-walled carbon nanotubes. Journal of Membrane Science, 2016, 514, 527-536.	8.2	39
32	A series of pyrido[2,3-b]pyrazin-3(4H)-one derivatives as aldose reductase inhibitors with antioxidant activity. European Journal of Medicinal Chemistry, 2016, 121, 308-317.	5.5	28
33	Pyridothiadiazine derivatives as aldose reductase inhibitors having antioxidant activity. Journal of Enzyme Inhibition and Medicinal Chemistry, 2016, 31, 126-130.	5.2	6
34	Transition metal-free intramolecular regioselective couplings of aliphatic and aromatic C-H bonds. Scientific Reports, 2016, 6, 19931.	3.3	16
35	Preparation and evaluation of crosslinked sulfonated polyphosphazene with poly(aryloxy) Tj ETQq1 1 0.784314 i	rgBT /Over 12.9	lock 10 Tf 50
36	Catalystâ€Free Isothiocyanatoalkylthiation of Styrenes with (Alkylthio)pyrrolidineâ€2,5â€diones and Trimethylsilyl Isothiocyanate. Advanced Synthesis and Catalysis, 2016, 358, 1794-1800.	4.3	22

CHANGJIN ZHU

#	Article	IF	CITATIONS
37	Multifunctional aldose reductase inhibitors based on 2H-benzothiazine 1,1-dioxide. RSC Advances, 2016, 6, 12761-12769.	3.6	7
38	Topical composition for treating diabetic cataracts: a patent evaluation (WO2015026380A1). Expert Opinion on Therapeutic Patents, 2016, 26, 731-735.	5.0	2
39	Copperâ€Catalyzed Domino Synthesis of Benzo[4,5]imidazo[1,2â€ <i>a</i>]pyrimidinâ€4(10 <i>H</i>)â€ones us Cyanamide as a Building Block. Advanced Synthesis and Catalysis, 2015, 357, 3961-3968.	sing 4.3	5
40	Chiral resolution, determination of absolute configuration, and biological evaluation of (1,2-benzothiazin-4-yl)acetic acid enantiomers as aldose reductase inhibitors. Journal of Enzyme Inhibition and Medicinal Chemistry, 2015, 30, 846-851.	5.2	7
41	Design and Synthesis of Potent and Multifunctional Aldose Reductase Inhibitors Based on Quinoxalinones. Journal of Medicinal Chemistry, 2015, 58, 1254-1267.	6.4	170
42	Arylthiolation of Arylamine Derivatives with (Arylthio)―pyrrolidineâ€2,5â€diones. Advanced Synthesis and Catalysis, 2015, 357, 481-488.	4.3	36
43	Design of polyphosphazene-based graft copolystyrenes with alkylsulfonate branch chains for proton exchange membranes. Journal of Membrane Science, 2015, 489, 119-128.	8.2	28
44	Phenolic 4-hydroxy and 3,5-dihydroxy derivatives of 3-phenoxyquinoxalin-2(1H)-one as potent aldose reductase inhibitors with antioxidant activity. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 3924-3927.	2.2	30
45	Bis[5-methoxy-2-(methoxycarbonyl)phenyl] methylphosphonate. Acta Crystallographica Section E: Structure Reports Online, 2014, 70, o269-o269.	0.2	0
46	2-[(E)-1,1-Dioxo-2-(2,4,5-trifluorobenzyl)-3,4-dihydro-2H-1,2-benzothiazin-4-ylidene]acetic acid. Acta Crystallographica Section E: Structure Reports Online, 2014, 70, o775-o775.	0.2	0
47	2-[(Z)-1,1-Dioxo-2-(2,4,5-trifluorobenzyl)-3,4-dihydro-2H-1,2-benzothiazin-4-ylidene]acetic acid. Acta Crystallographica Section E: Structure Reports Online, 2014, 70, o627-o627.	0.2	1
48	Structure–activity relationships studies of quinoxalinone derivatives as aldose reductase inhibitors. European Journal of Medicinal Chemistry, 2014, 80, 383-392.	5.5	101
49	Selective synthesis and comparative activity of olefinic isomers of 1,2-benzothiazine-1,1-dioxide carboxylates as aldose reductase inhibitors. RSC Advances, 2014, 4, 21134.	3.6	10
50	Novel synthesis of nitro-quinoxalinone derivatives as aldose reductase inhibitors. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 2086-2089.	2.2	17
51	Copper-catalyzed N-arylation and aerobic oxidation: one-pot synthesis of tetrahydroisoquinolino[2,1-a]quinazolinone derivatives. RSC Advances, 2014, 4, 2694-2704.	3.6	26
52	Copper-Catalyzed Asymmetric Synthesis and Comparative Aldose Reductase Inhibition Activity of (+)/(â^')-1,2-Benzothiazine-1,1-dioxide Acetic Acid Derivatives. Journal of Organic Chemistry, 2014, 79, 4963-4972.	3.2	10
53	Synthesis and Structure–Activity Relationship Studies of Quinoxaline Derivatives as Aldose Reductase Inhibitors. ChemMedChem, 2013, 8, 1913-1917.	3.2	56
54	Effect of C7 Modifications on Benzothiadiazineâ€1,1â€dioxide Derivatives on Their Inhibitory Activity and Selectivity toward Aldose Reductase. ChemMedChem, 2013, 8, 603-613.	3.2	19

CHANGJIN ZHU

#	Article	IF	CITATIONS
55	An Efficient Synthesis of Quinoxalinone Derivatives as Potent Inhibitors of Aldose Reductase. ChemMedChem, 2012, 7, 823-835.	3.2	68
56	1,2-Benzothiazine 1,1-dioxide carboxylate derivatives as novel potent inhibitors of aldose reductase. Bioorganic and Medicinal Chemistry, 2011, 19, 7262-7269.	3.0	43
57	Design and synthesis of potent and selective aldose reductase inhibitors based on pyridylthiadiazine scaffold. European Journal of Medicinal Chemistry, 2011, 46, 1536-1544.	5.5	28
58	Acetic Acid Derivatives of 3,4-Dihydro-2 <i>H</i> -1,2,4-benzothiadiazine 1,1-Dioxide as a Novel Class of Potent Aldose Reductase Inhibitors. Journal of Medicinal Chemistry, 2010, 53, 8330-8344.	6.4	55
59	Selective Hydrogenation of Aromatic Aminoketones by Pd/C Catalysis. Synthetic Communications, 2008, 38, 2889-2897.	2.1	5
60	Monodispersed and Oriented Microspheres of Polyaniline. Macromolecular Chemistry and Physics, 2006, 207, 1159-1165.	2.2	10
61	Hydrophobicity of Polyaniline Microspheres Deposited on a Glass Substrate. Macromolecular Rapid Communications, 2006, 27, 1029-1034.	3.9	26
62	Synthesis of Monoimidazole/Polyamine Amides. Synthetic Communications, 2004, 34, 1609-1615.	2.1	2
63	Aldose Reductase Inhibitors as Potential Therapeutic Drugs of Diabetic Complications. , 0, , .		29