Mathieu Thoury

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6530856/publications.pdf Version: 2024-02-01

Μλτηιείι Τησιίον

#	Article	IF	CITATIONS
1	Micro to Nano: Multiscale IR Analyses Reveal Zinc Soap Heterogeneity in a 19th-Century Painting by Corot. Analytical Chemistry, 2022, 94, 3103-3110.	6.5	18
2	X-ray Fluorescence Spectroscopy of Picrolite Raw Material on Cyprus. Heritage, 2022, 5, 664-677.	1.9	1
3	Degradation of historical paper induced by synchrotron X-ray technical examination. Cellulose, 2022, 29, 4347-4364.	4.9	6
4	Pushing Raman spectroscopy over the edge: purported signatures of organic molecules in fossil animals are instrumental artefacts. BioEssays, 2021, 43, e2000295.	2.5	23
5	Deciphering the Chemistry of Cultural Heritage: Targeting Material Properties by Coupling Spectral Imaging with Image Analysis. Accounts of Chemical Research, 2021, 54, 2823-2832.	15.6	10
6	In-place molecular preservation of cellulose in 5,000-year-old archaeological textiles. Proceedings of the United States of America, 2020, 117, 19670-19676.	7.1	26
7	X-ray Nanospectroscopy Reveals Binary Defect Populations in Sub-micrometric ZnO Crystallites. Journal of Physical Chemistry C, 2020, 124, 12596-12605.	3.1	6
8	Short- and Long-Term Effects of X-ray Synchrotron Radiation on Cotton Paper. Biomacromolecules, 2020, 21, 2795-2807.	5.4	8
9	The issue of eosin fading: A combined spectroscopic and mass spectrometric approach applied to historical lakes. Dyes and Pigments, 2020, 180, 108436.	3.7	14
10	Synchrotron Deep-UV Photoluminescence Imaging for the Submicrometer Analysis of Chemically Altered Zinc White Oil Paints. Analytical Chemistry, 2019, 91, 14887-14895.	6.5	14
11	Revealing the Distribution of Metal Carboxylates in Oil Paint from the Micro―to Nanoscale. Angewandte Chemie, 2019, 131, 11778-11782.	2.0	7
12	Revealing the Distribution of Metal Carboxylates in Oil Paint from the Micro―to Nanoscale. Angewandte Chemie - International Edition, 2019, 58, 11652-11656.	13.8	28
13	Glow in the dark: Use of synchrotron μXRF trace elemental mapping and multispectral macro-imaging on fossils from the Paris Biota (Bear Lake County, Idaho, USA). Geobios, 2019, 54, 71-79.	1.4	12
14	Synchrotron-Based Phase Mapping in Corroded Metals: Insights from Early Copper-Base Artifacts. Analytical Chemistry, 2019, 91, 1815-1825.	6.5	15
15	Microspectroscopic Investigation of Metal Soaps in Oil Paintingsa Case Study on late 19th Century		

MATHIEU THOURY

#	Article	IF	CITATIONS
19	Experimental study on merits of virtual cleaning of paintings with aged varnish. Optics Express, 2015, 23, 33836.	3.4	14
20	Radiation damages during synchrotron X-ray micro-analyses of Prussian blue and zinc white historic paintings: detection, mitigation and integration. Applied Physics A: Materials Science and Processing, 2015, 121, 949-955.	2.3	22
21	Use of imaging spectroscopy, fiber optic reflectance spectroscopy, and X-ray fluorescence to map and identify pigments in illuminated manuscripts. Studies in Conservation, 2014, 59, 91-101.	1.1	127
22	Ancient materials speciï¬cities for their synchrotron examination and insights into their epistemological implications. Journal of Cultural Heritage, 2013, 14, 277-289.	3.3	26
23	A multiscalar photoluminescence approach to discriminate among semiconducting historical zinc white pigments. Analyst, The, 2013, 138, 4463.	3.5	39
24	Development and trends in synchrotron studies of ancient and historical materials. Physics Reports, 2012, 519, 51-96.	25.6	125
25	Cultural heritage and archaeology materials studied by synchrotron spectroscopy and imaging. Applied Physics A: Materials Science and Processing, 2012, 106, 377-396.	2.3	87
26	Synchrotron UVâ^'Visible Multispectral Luminescence Microimaging of Historical Samples. Analytical Chemistry, 2011, 83, 1737-1745.	6.5	52
27	Near-Infrared Luminescence of Cadmium Pigments: In Situ Identification and Mapping in Paintings. Applied Spectroscopy, 2011, 65, 939-951.	2.2	73
28	Visible and Infrared Imaging Spectroscopy of Picasso's <i>Harlequin Musician</i> : Mapping and Identification of Artist Materials <i>in Situ</i> . Applied Spectroscopy, 2010, 64, 584-594.	2.2	201
29	Excitation emission and time-resolved fluorescence spectroscopy of selected varnishes used in historical musical instruments. Talanta, 2009, 80, 286-293.	5.5	32
30	Nondestructive Varnish Identification by Ultraviolet Fluorescence Spectroscopy. Applied Spectroscopy, 2007, 61, 1275-1282.	2.2	42
31	Bi-directional reflectance of a varnished painting. Optics Communications, 2004, 231, 25-33.	2.1	13