
## **Thomas Hanemann**

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6530772/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                              | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | 3D-Printed Hermetic Alumina Housings. Materials, 2021, 14, 200.                                                                                                                      | 1.3 | 15        |
| 2  | Structure–Property Relationship of Polymerized Ionic Liquids for Solid-State Electrolyte Membranes.<br>Polymers, 2021, 13, 792.                                                      | 2.0 | 9         |
| 3  | Structure-Property Relation of Trimethyl Ammonium Ionic Liquids for Battery Applications. Applied<br>Sciences (Switzerland), 2021, 11, 5679.                                         | 1.3 | 14        |
| 4  | Crosslinking Behavior of UV-Cured Polyorganosilazane as Polymer-Derived Ceramic Precursor in Ambient and Nitrogen Atmosphere. Polymers, 2021, 13, 2424.                              | 2.0 | 8         |
| 5  | Formulation of a Ceramic Ink for 3D Inkjet Printing. Micromachines, 2021, 12, 1136.                                                                                                  | 1.4 | 6         |
| 6  | Printing of Zirconia Parts via Fused Filament Fabrication. Materials, 2021, 14, 5467.                                                                                                | 1.3 | 24        |
| 7  | Poly(ionic liquid) Based Composite Electrolytes for Lithium Ion Batteries. Polymers, 2021, 13, 4469.                                                                                 | 2.0 | 4         |
| 8  | New Feedstock System for Fused Filament Fabrication of Sintered Alumina Parts. Materials, 2020, 13, 4461.                                                                            | 1.3 | 33        |
| 9  | Development of a Multi-Material Stereolithography 3D Printing Device. Micromachines, 2020, 11, 532.                                                                                  | 1.4 | 30        |
| 10 | Investigations on the Processing of Ceramic Filled Inks for 3D InkJet Printing. Materials, 2020, 13, 2587.                                                                           | 1.3 | 9         |
| 11 | 3D Printing of ABS Barium Ferrite Composites. Materials, 2020, 13, 1481.                                                                                                             | 1.3 | 28        |
| 12 | Additives for Cycle Life Improvement of Highâ€Voltage LNMOâ€Based Liâ€Ion Cells. ChemElectroChem, 2019, 6,<br>5255-5263.                                                             | 1.7 | 24        |
| 13 | Polymerizable Ionic Liquids for Solid-State Polymer Electrolytes. Molecules, 2019, 24, 324.                                                                                          | 1.7 | 8         |
| 14 | PVB/PEG-Based Feedstocks for Injection Molding of Alumina Microreactor Components. Materials, 2019, 12, 1219.                                                                        | 1.3 | 10        |
| 15 | Influence of Al2O3 Nanoparticle Addition on a UV Cured Polyacrylate for 3D Inkjet Printing. Polymers, 2019, 11, 633.                                                                 | 2.0 | 8         |
| 16 | The influence on sintering and properties of sodium niobate (NaNbO3) ceramics by<br>"non-stoichiometric―precursor compositions. Materials Chemistry and Physics, 2019, 229, 437-447. | 2.0 | 4         |
| 17 | Investigation of Feedstock Preparation for Injection Molding of Oxide–Oxide Ceramic Composites.<br>Journal of Manufacturing and Materials Processing, 2019, 3, 9.                    | 1.0 | 10        |
| 18 | Experimental dataset on electrolyte mixtures containing fluoroethylene carbonate and lithium bis(trifluoromethanesulfonyl)imide. Data in Brief, 2019, 23, 103703.                    | 0.5 | 1         |

| #  | Article                                                                                                                                                                                                                          | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Overcoming oxygen inhibition effect by TODA in acrylate-based ceramic-filled inks. Progress in Organic Coatings, 2019, 130, 221-225.                                                                                             | 1.9 | 11        |
| 20 | Powder Injection Molding of Oxide Ceramic CMC. Key Engineering Materials, 2019, 809, 148-152.                                                                                                                                    | 0.4 | 4         |
| 21 | Low-flammable electrolytes with fluoroethylene carbonate based solvent mixtures and lithium<br>bis(trifluoromethanesulfonyl)imide for lithium-ion batteries. Electrochimica Acta, 2019, 298, 960-972.                            | 2.6 | 13        |
| 22 | ELECTROPHORETIC DEPOSITION OF BiVOâ,,, LAYERS ON FTO SUBSTRATES FOR PHOTO ELECTRO-CHEMICAL CELLS. Ceramics - Silikaty, 2019, , 124-130.                                                                                          | 0.2 | 2         |
| 23 | Ceramic Injection Moulding using 3D-Printed Mould Inserts. Ceramics in Modern Technologies, 2019, 1, 104-110.                                                                                                                    | 0.3 | 4         |
| 24 | Inkjet-printed internal light extraction layers for organic light emitting diodes. Flexible and Printed Electronics, 2018, 3, 015007.                                                                                            | 1.5 | 6         |
| 25 | Fused Filament Fabrication of Small Ceramic Components. Materials, 2018, 11, 1463.                                                                                                                                               | 1.3 | 78        |
| 26 | A 3D-Printable Polymer-Metal Soft-Magnetic Functional Composite—Development and<br>Characterization. Materials, 2018, 11, 189.                                                                                                   | 1.3 | 80        |
| 27 | Fused Deposition Modeling of ABS-Barium Titanate Composites: A Simple Route towards Tailored<br>Dielectric Devices. Polymers, 2018, 10, 666.                                                                                     | 2.0 | 70        |
| 28 | Optical and Thermomechanical Properties of Doped Polyfunctional Acrylate Copolymers. Polymers, 2018, 10, 337.                                                                                                                    | 2.0 | 5         |
| 29 | Large-Area Screen-Printed Internal Extraction Layers for Organic Light-Emitting Diodes. ACS Photonics, 2017, 4, 928-933.                                                                                                         | 3.2 | 43        |
| 30 | Comparative surface analysis study of the solid electrolyte interphase formation on graphite anodes<br>in lithiumâ€ion batteries depending on the electrolyte composition. Surface and Interface Analysis, 2017,<br>49, 361-369. | 0.8 | 23        |
| 31 | Automated Misalignment Compensating Interconnects Based on Self-Written Waveguides. Journal of<br>Lightwave Technology, 2017, 35, 2678-2684.                                                                                     | 2.7 | 19        |
| 32 | Development and characterization of adjustable refractive index scattering epoxy acrylate polymer layers. Optical Engineering, 2017, 56, 037105.                                                                                 | 0.5 | 2         |
| 33 | Preventing Li-ion cell explosion during thermal runaway with reduced pressure. Applied Thermal Engineering, 2017, 124, 539-544.                                                                                                  | 3.0 | 53        |
| 34 | Ink-jet printed optical waveguides. Flexible and Printed Electronics, 2017, 2, 045003.                                                                                                                                           | 1.5 | 12        |
| 35 | Pulsed laser deposition of piezoelectric lead zirconate titanate thin films maintaining a post-CMOS compatible thermal budget. Journal of Applied Physics, 2017, 122, .                                                          | 1.1 | 8         |
| 36 | Towards low-temperature deposition of piezoelectric Pb(Zr,Ti)O3: Influence of pressure and temperature on the properties of pulsed laser deposited Pb(Zr,Ti)O3. Thin Solid Films, 2017, 636, 680-687.                            | 0.8 | 12        |

| #  | Article                                                                                                                                                                                                                                               | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Refractive index increase of acrylateâ€based polymers by adding soluble aromatic guestâ€molecules.<br>Polymers for Advanced Technologies, 2017, 28, 506-510.                                                                                          | 1.6 | 4         |
| 38 | Refractive index increase of acrylate-based polymers by adding soluble aromatic guest-molecules.<br>Polymers for Advanced Technologies, 2017, 28, 1209-1209.                                                                                          | 1.6 | 0         |
| 39 | Micron-Sized Pored Membranes Based on Polyvinylidene Difluoride Hexafluoropropylene Prepared by<br>Phase Inversion Techniques. Polymers, 2017, 9, 489.                                                                                                | 2.0 | 3         |
| 40 | Screen-Printed Internal Extraction Layers based on Scattering Polymer/Nanoparticle Composites for OLEDs. , 2017, , .                                                                                                                                  |     | 0         |
| 41 | LIGHT INTENSITY INFLUENCE ON STRONTIUM TITANATE BASED PHOTO- ELECTROCHEMICAL CELLS. Ceramics - Silikaty, 2017, , 179-182.                                                                                                                             | 0.2 | 0         |
| 42 | Investigation of Ternary Mixtures Containing 1-Ethyl-3-methylimidazolium<br>Bis(trifluoromethanesulfonyl)azanide, Ethylene Carbonate and Lithium<br>Bis(trifluoromethanesulfonyl)azanide. International Journal of Molecular Sciences, 2016, 17, 670. | 1.8 | 8         |
| 43 | Development and characterization of high refractive index and high scattering acrylate polymer layers. Optical Engineering, 2016, 55, 117106.                                                                                                         | 0.5 | 2         |
| 44 | Development and characterization of high refractive index and high scattering acrylate polymer layers. , 2016, , .                                                                                                                                    |     | 0         |
| 45 | Surface Analytical Study Regarding the Solid Electrolyte Interphase Composition of Nanoparticulate<br>SnO <sub>2</sub> Anodes for Li-Ion Batteries. Journal of Physical Chemistry C, 2016, 120, 24706-24714.                                          | 1.5 | 29        |
| 46 | The co-casting process: A new manufacturing process for ceramic multilayer devices. Sensors and Actuators A: Physical, 2016, 251, 266-275.                                                                                                            | 2.0 | 5         |
| 47 | Development and characterization of adjustable refractive index scattering epoxy acrylate polymer layers. , 2016, , .                                                                                                                                 |     | 1         |
| 48 | Ink-jet printed fluorescent materials as light sources for planar optical waveguides on polymer foils.<br>Optical Engineering, 2016, 55, 107107.                                                                                                      | 0.5 | 10        |
| 49 | Ink-jet printing of host-guest systems based on acrylates with fluorescent dopants. , 2016, , .                                                                                                                                                       |     | 1         |
| 50 | Optically and rheologically tailored polymers for applications in integrated optics. Sensors and Actuators A: Physical, 2016, 241, 224-230.                                                                                                           | 2.0 | 10        |
| 51 | The influence of photo initiators on refractive index and glass transition temperature of optically and rheologically adjusted acrylate based polymers. Polymers for Advanced Technologies, 2016, 27, 1294-1300.                                      | 1.6 | 2         |
| 52 | Tailoring Optical and Rheological Properties of Host-guest Systems Based on an Epoxy Acrylate.<br>Materials Today: Proceedings, 2016, 3, 289-293.                                                                                                     | 0.9 | 2         |
| 53 | Investigation of Binary Mixtures Containing 1-Ethyl-3-methylimidazolium<br>Bis(trifluoromethanesulfonyl)azanide and Ethylene Carbonate. Journal of Chemical & Engineering<br>Data, 2016, 61, 114-123.                                                 | 1.0 | 30        |
| 54 | LOWERING THE SINTERING TEMPERATURE OF BARIUM STRONTIUM TITANATE BULK CERAMICS BY BARIUM STRONTIUM TITANATE-GEL AND BaCu(Bâ,,Oâ,). Ceramics - Silikaty, 2016, , 1-11.                                                                                  | 0.2 | 3         |

| #  | Article                                                                                                                                                               | IF                | CITATIONS                 |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|---------------------------|
| 55 | Optical waveguides fabricated by combination of ink-jet and flexographic printing. NIP & Digital Fabrication Conference, 2016, 32, 294-297.                           | 0.1               | 0                         |
| 56 | Polymers with Customizable Optical and Rheological Properties for Printable Single-mode<br>Waveguides. Procedia Engineering, 2015, 120, 3-6.                          | 1.2               | 5                         |
| 57 | Electrolyte Mixtures Based on Ethylene Carbonate and Dimethyl Sulfone for Liâ€lon Batteries with<br>Improved Safety Characteristics. ChemSusChem, 2015, 8, 1892-1900. | 3.6               | 24                        |
| 58 | Viscosity and refractive index adjustment of poly(methyl methacrylateâ€coâ€ethyleneglycol) Tj ETQq0 0 0 rgBT                                                          | Overlock 2<br>1.6 | 10 <sub>8</sub> Tf 50 622 |
| 59 | Interaction of High Flash Point Electrolytes and PE-Based Separators for Li-Ion Batteries.<br>International Journal of Molecular Sciences, 2015, 16, 20258-20276.     | 1.8               | 10                        |
| 60 | Investigation of the Oxidative Stability of Li-Ion Battery Electrolytes Using Cathode Materials. ECS<br>Electrochemistry Letters, 2015, 4, A141-A144.                 | 1.9               | 5                         |
| 61 | Morphology and oxygen vacancy investigation of strontium titanate-based photo electrochemical cells. Journal of Materials Science, 2015, 50, 40-48.                   | 1.7               | 5                         |
| 62 | Rapid prototyping of glass microfluidic chips. , 2015, , .                                                                                                            |                   | 1                         |
| 63 | Cladded self-written multimode step-index waveguides using a one-polymer approach. Optics Letters, 2015, 40, 1830.                                                    | 1.7               | 34                        |
| 64 | Polymers with customizable optical and rheological properties based on an epoxy acrylate based host-guest system. , 2015, , .                                         |                   | 0                         |
| 65 | Novel electrolyte mixtures based on dimethyl sulfone, ethylene carbonate and LiPF6 for lithium-ion<br>batteries. Journal of Power Sources, 2015, 298, 322-330.        | 4.0               | 25                        |
| 66 | A Novel Co-casting Process for Piezoelectric Multilayer Ceramics with Silver Inner Electrodes.<br>Procedia Engineering, 2015, 120, 124-129.                           | 1.2               | 5                         |
| 67 | Modeling of the Electrical Properties of Bidirectional Alkaline Air Electrodes. Journal of the Electrochemical Society, 2014, 161, A1019-A1022.                       | 1.3               | 1                         |
| 68 | Tailoring the optical and rheological properties of an epoxy acrylate based host-guest system. , 2014, , .                                                            |                   | 0                         |
| 69 | Polymerâ€based route to ferroelectric lead strontium titanate thin films. Journal of Applied Polymer<br>Science, 2014, 131, .                                         | 1.3               | 4                         |
| 70 | Tuning the Optical and Rheological Properties of Host-guest Systems based on an Epoxy Acrylate and MMA. Procedia Technology, 2014, 15, 161-167.                       | 1.1               | 4                         |
| 71 | Tailoring the optical and rheological properties of an epoxy acrylate based host-guest system. Optical<br>Engineering, 2014, 53, 087106.                              | 0.5               | 15                        |
| 72 | Anodic Aluminum Dissolution of LiTFSA Containing Electrolytes for Li-Ion-Batteries. Electrochimica<br>Acta, 2014, 116, 388-395.                                       | 2.6               | 35                        |

| #  | Article                                                                                                                                                                                                                                                                                | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Polymethylmethacrylate/polyethyleneglycol-based partially water soluble binder system for micro ceramic injection moulding. Microsystem Technologies, 2014, 20, 51-58.                                                                                                                 | 1.2 | 10        |
| 74 | "LIGA2.X―process for mass production of single polymeric LIGA micro parts. Microsystem<br>Technologies, 2014, 20, 1955-1960.                                                                                                                                                           | 1.2 | 0         |
| 75 | Ferroelectric thin film fabrication by direct UV-lithography. Microsystem Technologies, 2014, 20, 1859-1867.                                                                                                                                                                           | 1.2 | 5         |
| 76 | Viscosity and refractive index tailored methacrylateâ€based polymers. Journal of Applied Polymer<br>Science, 2014, 131, .                                                                                                                                                              | 1.3 | 8         |
| 77 | Mixtures of Ionic Liquid and Sulfolane as Electrolytes for Li-Ion Batteries. Electrochimica Acta, 2014, 147, 704-711.                                                                                                                                                                  | 2.6 | 36        |
| 78 | Anodic Aluminum Dissolution in Conducting Salt Containing Electrolytes for Lithium-Ion Batteries.<br>Journal of the Electrochemical Society, 2014, 161, A431-A438.                                                                                                                     | 1.3 | 31        |
| 79 | Electrochemical performance of tin-based nano-composite electrodes using a vinylene<br>carbonate-containing electrolyte for Li-ion cells. Journal of Power Sources, 2014, 263, 145-153.                                                                                                | 4.0 | 10        |
| 80 | Low Temperature Sintering of PZT. Journal of Physics: Conference Series, 2014, 557, 012132.                                                                                                                                                                                            | 0.3 | 4         |
| 81 | Investigation of the degradation of SnO2 electrodes for use in Li-ion cells. Journal of Power Sources, 2013, 233, 139-147.                                                                                                                                                             | 4.0 | 34        |
| 82 | Metal-ceramic-composite casting of complex micro components. Microsystem Technologies, 2013, 19, 159-165.                                                                                                                                                                              | 1.2 | 5         |
| 83 | Suppressed lithium dendrite growth in lithium batteries using ionic liquid electrolytes: Investigation by electrochemical impedance spectroscopy, scanning electron microscopy, and in situ 7Li nuclear magnetic resonance spectroscopy. Journal of Power Sources, 2013, 228, 237-243. | 4.0 | 137       |
| 84 | Gel electrolytes based on ionic liquids for advanced lithium polymer batteries. Electrochimica Acta, 2013, 89, 823-831.                                                                                                                                                                | 2.6 | 88        |
| 85 | Nanoparticle surface polarity influence on the flow behavior of polymer matrix composites. Polymer Composites, 2013, 34, 1425-1432.                                                                                                                                                    | 2.3 | 5         |
| 86 | Polyester-styrene/ceramic nanocomposites for antenna applications. , 2013, , .                                                                                                                                                                                                         |     | 2         |
| 87 | Thickness variation of electrophoretically deposited strontium titanate films for photoelectrochemical energy conversion. Journal of Applied Physics, 2013, 114, 027020.                                                                                                               | 1.1 | 7         |
| 88 | Influence of the nanoparticle surface polarity on the flow behavior of polymer matrix composites. ,<br>2012, , .                                                                                                                                                                       |     | 0         |
| 89 | Polymer nanocomposites for optical applications. , 2012, , 567-604.                                                                                                                                                                                                                    |     | 7         |
| 90 | Realization of embedded capacitors using polymer matrix composites with barium titanate as high-k-active filler. Microsystem Technologies, 2012, 18, 745-751.                                                                                                                          | 1.2 | 9         |

| #   | Article                                                                                                                                                                                                          | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Development of Two-Component Micropowder Injection Molding (2C MicroPIM): Characteristics of Applicable Materials. International Journal of Applied Ceramic Technology, 2011, 8, 194-202.                        | 1.1 | 22        |
| 92  | Influence of Stearic Acid Concentration on the Processing of ZrO2-Containing Feedstocks Suitable<br>for Micropowder Injection Molding. International Journal of Applied Ceramic Technology, 2011, 8,<br>865-872. | 1.1 | 28        |
| 93  | Fatty Acid Surfactant Structure-Feedstock Flow Properties: Correlation for High-Pressure Ceramic<br>Injection Molding. International Journal of Applied Ceramic Technology, 2011, 8, 1296-1304.                  | 1.1 | 5         |
| 94  | Simulation of micro powder injection moulding: Powder segregation and yield stress effects during form filling. Journal of the European Ceramic Society, 2011, 31, 2525-2534.                                    | 2.8 | 26        |
| 95  | Nanoparticles in polymer-matrix composites. Microsystem Technologies, 2011, 17, 183-193.                                                                                                                         | 1.2 | 9         |
| 96  | Development of new polymer–BaTiO3-composites with improved permittivity for embedded capacitors.<br>Microsystem Technologies, 2011, 17, 195-201.                                                                 | 1.2 | 20        |
| 97  | New methacrylate-based feedstock systems for micro powder injection moulding. Microsystem Technologies, 2011, 17, 451-457.                                                                                       | 1.2 | 5         |
| 98  | Dielectric property improvement of polymer-nanosized strontium titanate-composites for applications in microelectronics. Microsystem Technologies, 2011, 17, 1529-1535.                                          | 1.2 | 10        |
| 99  | Tailoring the optical and thermomechanical properties of polymer host–guest systems. Journal of Applied Polymer Science, 2011, 122, 3514-3519.                                                                   | 1.3 | 9         |
| 100 | Polymerization conditions influence on the thermomechanical and dielectric properties of<br>unsaturated polyester–styrene-copolymers. Microelectronic Engineering, 2010, 87, 15-19.                              | 1.1 | 18        |
| 101 | Tuning the dielectric constant of polymers using organic dopants. Microelectronic Engineering, 2010, 87, 533-536.                                                                                                | 1.1 | 9         |
| 102 | Temperature treatment of nano-scaled barium titanate filler to improve the dielectric properties of high-k polymer based composites. Microelectronic Engineering, 2010, 87, 1978-1983.                           | 1.1 | 33        |
| 103 | Polymer-Dopant-Systems: Tailoring of Optical and Thermomechanical Properties. , 2010, , .                                                                                                                        |     | 1         |
| 104 | Polymer-Nanoparticle Composites: From Synthesis to Modern Applications. Materials, 2010, 3, 3468-3517.                                                                                                           | 1.3 | 669       |
| 105 | Compounding, micro injection moulding and characterisation of polycarbonate-nanosized alumina-composites for application in microoptics. Microsystem Technologies, 2009, 15, 421-427.                            | 1.2 | 23        |
| 106 | Rheological investigations on the flow behavior of polymerâ€microsized iron powder composites.<br>Polymer Composites, 2009, 30, 1114-1118.                                                                       | 2.3 | 4         |
| 107 | Flow behavior of unsaturated polyester resin—Microsized 17â€4PH stainless steel powder—Feedstocks.<br>Polymer Composites, 2009, 30, 1873-1878.                                                                   | 2.3 | 2         |
| 108 | Process chain development for the realization of zirconia microparts using composite reaction molding. Ceramics International, 2009, 35, 269-275.                                                                | 2.3 | 13        |

| #   | Article                                                                                                                                                                                                                                                                                      | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Replication technologies for HARM devices: status and perspectives. Microsystem Technologies, 2008, 14, 1599-1605.                                                                                                                                                                           | 1.2 | 29        |
| 110 | Influence of particle properties on the viscosity of polymer–alumina composites. Ceramics<br>International, 2008, 34, 2099-2105.                                                                                                                                                             | 2.3 | 46        |
| 111 | Refractive index modification of polymers using nanosized dopants. Proceedings of SPIE, 2008, , .                                                                                                                                                                                            | 0.8 | 7         |
| 112 | Polymer/Phenanthrene-Derivative Host-Guest Systems: Rheological, Optical and Thermal Properties.<br>Macromolecular Materials and Engineering, 2007, 292, 285-294.                                                                                                                            | 1.7 | 30        |
| 113 | Process chain development for the rapid prototyping of microstructured polymer, ceramic and metal parts: composite flow behaviour optimisation, replication via reaction moulding and thermal postprocessing. International Journal of Advanced Manufacturing Technology, 2007, 33, 167-175. | 1.5 | 17        |
| 114 | Influence of dispersants on the flow behaviour of unsaturated polyester–alumina composites.<br>Composites Part A: Applied Science and Manufacturing, 2006, 37, 735-741.                                                                                                                      | 3.8 | 24        |
| 115 | Viscosity change of unsaturated polyester–alumina-composites using polyethylene glycol alkyl ether<br>based dispersants. Composites Part A: Applied Science and Manufacturing, 2006, 37, 2155-2163.                                                                                          | 3.8 | 15        |
| 116 | Thermoplastic polymer nanocomposites for applications in optical devices. Materials Science and Engineering C, 2006, 26, 1067-1071.                                                                                                                                                          | 3.8 | 42        |
| 117 | Process Chain for Tailoring the Refractive Index of Thermoplastic Optical Materials using Ceramic Nanoparticles. Advanced Engineering Materials, 2005, 7, 540-545.                                                                                                                           | 1.6 | 13        |
| 118 | Fabrication of ceramic microcomponents using deep X-ray lithography. Microsystem Technologies, 2005, 11, 271-277.                                                                                                                                                                            | 1.2 | 12        |
| 119 | Tuning the Refractive Index of Polymers for Polymer Waveguides Using Nanoscaled Ceramics or Organic Dyes. Advanced Engineering Materials, 2004, 6, 52-57.                                                                                                                                    | 1.6 | 48        |
| 120 | Cross Linking Behavior of Preceramic Polymers Effected by UV- and Synchrotron Radiation. Advanced Engineering Materials, 2004, 6, 676-680.                                                                                                                                                   | 1.6 | 43        |
| 121 | From micro to nano: properties and potential applications of micro- and nano-filled polymer ceramic composites in microsystem technology. IET Nanobiotechnology, 2004, 151, 167.                                                                                                             | 2.1 | 22        |
| 122 | Rapid fabrication and replication of metal, ceramic and plastic mould inserts for application in<br>microsystem technologies. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of<br>Mechanical Engineering Science, 2003, 217, 53-63.                                | 1.1 | 28        |
| 123 | Direct laser-assisted processing of polymers for microfluidic and micro-optical applications. , 2003, , .                                                                                                                                                                                    |     | 7         |
| 124 | Microstructuring of Preceramic Polymers. Advanced Engineering Materials, 2002, 4, 869-873.                                                                                                                                                                                                   | 1.6 | 23        |
| 125 | Micromolded easy-assembly multi fiber connector: RibCon ®. Microsystem Technologies, 2002, 8, 83-87.                                                                                                                                                                                         | 1.2 | 198       |
| 126 | Rapid fabrication of microcomponents - UV-laser assisted prototyping, laser micro-machining of mold<br>inserts and replication via photomolding. Microsystem Technologies, 2002, 9, 67-74.                                                                                                   | 1.2 | 33        |

| #   | Article                                                                                                                                                                                | IF   | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 127 | Laser micromaching and light induced reaction injection molding as suitable process sequence for the rapid fabrication of microcomponents. Microsystem Technologies, 2002, 7, 209-214. | 1.2  | 23        |
| 128 | Laser micromachining of polymeric mold inserts for rapid prototyping of PMMA devices via photomolding. , 2002, 4637, 318.                                                              |      | 7         |
| 129 | <title>RibCon: micromolded easy-assembly multifiber connector for single- and multimode applications</title> . , 2001, 4408, 478.                                                      |      | 7         |
| 130 | <title>Rapid fabrication of microcomponents</title> ., 2000, , .                                                                                                                       |      | 4         |
| 131 | Laser Micromachining of Metallic Mold Inserts for Replication Techniques. Materials Research<br>Society Symposia Proceedings, 2000, 617, 551.                                          | 0.1  | 3         |
| 132 | <title>Innovations in molding technologies for microfabrication</title> ., 1999, 3874, 53.                                                                                             |      | 11        |
| 133 | Innovative molding technologies for the fabrication of components for microsystems. , 1999, , .                                                                                        |      | 9         |
| 134 | <title>Micromolding of polymer waveguides</title> ., 1999, , .                                                                                                                         |      | 11        |
| 135 | Polymer materials for microsystem technologies. Microsystem Technologies, 1998, 5, 44-48.                                                                                              | 1.2  | 33        |
| 136 | <title>New developments of process technologies for microfabrication</title> ., 1997,,.                                                                                                |      | 5         |
| 137 | <title>Hot embossing and injection molding for micro-optical components</title> . , 1997, , .                                                                                          |      | 13        |
| 138 | Some novel disaccharide-derived liquid crystals. Liquid Crystals, 1997, 22, 47-50.                                                                                                     | 0.9  | 16        |
| 139 | Injection molding and related techniques for fabrication of microstructures. Microsystem Technologies, 1997, 3, 129-133.                                                               | 1.2  | 101       |
| 140 | Various replication techniques for manufacturing three-dimensional metal microstructures.<br>Microsystem Technologies, 1997, 4, 28-31.                                                 | 1.2  | 59        |
| 141 | Micromolding and photopolymerization. Advanced Materials, 1997, 9, 927-929.                                                                                                            | 11.1 | 15        |
| 142 | <title>Photorefractivity in new organic polymeric materials</title> ., 1995, 2526, 82.                                                                                                 |      | 12        |
| 143 | Novel photocrosslinkable systems for nonlinear optics. Advanced Materials, 1995, 7, 465-468.                                                                                           | 11.1 | 26        |
| 144 | Crystal structure of 4′-pentyl-4-cyanobiphenyl (5CB). Liquid Crystals, 1995, 19, 699-702.                                                                                              | 0.9  | 59        |

| #   | Article                                                                                                                                                                                   | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 145 | Guestâ€hostâ€mixtures: A correlation between the dye's order parameter with thermodynamic and structural quantities. Zeitschrift Fur Elektrotechnik Und Elektrochemie, 1994, 98, 596-602. | 0.9 | 4         |
| 146 | Orientational Behavior of Stilbene Dyes in Nematic Liquid Crystals. Molecular Crystals and Liquid<br>Crystals, 1993, 231, 119-127.                                                        | 0.3 | 4         |
| 147 | Synthesis and characterization of new liquid-crystalline dyes for non-linear optics. Liquid Crystals, 1993, 14, 635-643.                                                                  | 0.9 | 5         |
| 148 | Calculation of UV/VIS absorption spectra of liquid crystals and dye molecules An INDO MO approach.<br>Liquid Crystals, 1992, 11, 917-927.                                                 | 0.9 | 43        |
| 149 | Conformation Analysis and Absorption Properties of Anthraquinone Dyes—A Quantum-chemical Approach. Molecular Crystals and Liquid Crystals, 1991, 207, 103-116.                            | 0.7 | 15        |
| 150 | Fabrication of functional polymeric prototypes for micro-fluidical and micro-optical applications. , 0,                                                                                   |     | 0         |
| 151 | Überwachung der kontinuierlichen hydrothermalen Synthese mittels Impedanzspektroskopie.<br>Chemie-Ingenieur-Technik. 0                                                                    | 0.4 | 1         |