Francisco Palacios

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/653077/publications.pdf

Version: 2024-02-01

268 papers

8,144 citations

44 h-index

57631

74 g-index

384 all docs

384 docs citations

times ranked

384

4828 citing authors

#	Article	IF	CITATIONS
1	Carbon Trifluoromethylation Reactions of Hydrocarbon Derivatives and Heteroarenes. Chemical Reviews, 2015, 115, 1847-1935.	23.0	886
2	The aza-Wittig reaction: an efficient tool for the construction of carbon–nitrogen double bonds. Tetrahedron, 2007, 63, 523-575.	1.0	338
3	Synthesis of Î ² -Aminophosphonates and -Phosphinates. Chemical Reviews, 2005, 105, 899-932.	23.0	327
4	2H-Azirines as Synthetic Tools in Organic Chemistry. European Journal of Organic Chemistry, 2001, 2001, 2401-2414.	1.2	193
5	(C5Me5)SiMe3 as a mild and effective reagent for transfer of the C5Me5 ring: an improved route to monopentamethylcyclopentadienyl trihalides of the group 4 elements. Journal of Organometallic Chemistry, 1988, 340, 37-40.	0.8	166
6	SYNTHESIS OF REACTIVITY OF λ ⁵ -PHOSPHAZENES. USES AS SYNTHETIC INTERMEDIATES. Organic Preparations and Procedures International, 1991, 23, 1-65.	0.6	109
7	Straightforward Access to Pyrazines, Piperazinones, and Quinoxalines by Reactions of 1,2-Diaza-1,3-butadienes with 1,2-Diamines under Solution, Solvent-Free, or Solid-Phase Conditions. Journal of Organic Chemistry, 2006, 71, 5897-5905.	1.7	109
8	PREPARATION, PROPERTIES AND SYNTHETIC APPLICATIONS OF 2 <i>H</i> -AZIRINES A REVIEW. Organic Preparations and Procedures International, 2002, 34, 219-269.	0.6	106
9	Synthesis of Aza Polycyclic Compounds Derived from Pyrrolidine, Indolizidine, and Indole via Intramolecular Dielsâ^Alder Cycloadditions of Neutral 2-Azadienes. Journal of Organic Chemistry, 2002, 67, 1941-1946.	1.7	88
10	Aza-Wittig Reaction of N-Vinylic Phosphazenes with Carbonyl Compounds. Azadiene-Mediated Synthesis of Isoquinolines and 5,6-Dihydro-2H-1,3-oxazines. Journal of Organic Chemistry, 1997, 62, 1146-1154.	1.7	86
11	Synthesis of Pyrazine-phosphonates and -Phosphine Oxides from 2H-Azirines or Oximes. Organic Letters, 2002, 4, 2405-2408.	2.4	81
12	Asymmetric synthesis of 2H-aziridine phosphonates, and \hat{l}_{\pm} - or \hat{l}^2 -aminophosphonates from enantiomerically enriched 2H-azirines. Tetrahedron: Asymmetry, 2003, 14, 689-700.	1.8	81
13	Asymmetric Synthesis of 2H-Azirines Derived from Phosphine Oxides Using Solid-Supported Amines. Ring Opening of Azirines with Carboxylic Acids. Journal of Organic Chemistry, 2002, 67, 7283-7288.	1.7	78
14	Simple Asymmetric Synthesis of 2H-Azirines Derived from Phosphine Oxidesâ€. Journal of Organic Chemistry, 2000, 65, 3213-3217.	1.7	76
15	Regioselective alkylation reactions of hydrazones derived from phosphine oxides and phosphonates. Synthesis of phosphorus substituted 1-amino-pyrrolones, pyridinones and pyrroles. Tetrahedron, 2001, 57, 1961-1972.	1.0	76
16	Synthesis and Reactivity of Electron-Poor 2-Azadienes. [4 + 2] Cycloaddition Reactions with Alkenes and Enamines. Journal of Organic Chemistry, 1995, 60, 2384-2390.	1.7	73
17	Recent advances of the Povarov reaction in medicinal chemistry. Drug Discovery Today: Technologies, 2018, 29, 71-79.	4.0	69
18	Synthetic Applications of Intramolecular Aza-Wittig Reaction for the Preparation of Heterocyclic Compounds. Current Organic Chemistry, 2009, 13, 810-828.	0.9	67

#	Article	IF	CITATIONS
19	An Efficient Synthesis of Achiral and Chiral Cyclic Dehydro-α-Amino Acid Derivatives Through Nucleophilic Addition of Amines to \hat{I}^2 , \hat{I}^3 -Unsaturated \hat{I} ±-Keto Esters. European Journal of Organic Chemistry, 2006, 2843-2850.	1.2	64
20	Mechanism and Stereoselectivity of the Aza-Wittig Reaction between Phosphazenes and Aldehydes. Journal of Organic Chemistry, 2006, 71, 2839-2847.	1.7	63
21	A simple synthesis of 3-phosphonyl-4-aminoquinolines from \hat{l}^2 -enaminophosphonates. Tetrahedron, 1999, 55, 5947-5964.	1.0	62
22	Reaction of 2H-Azirine Phosphine Oxide and -Phosphonates with Nucleophiles. Stereoselective Synthesis of Functionalized Aziridines and \hat{l}_{\pm} - and \hat{l}_{\pm} -Aminophosphorus Derivatives \hat{a} . Journal of Organic Chemistry, 2005, 70, 8895-8901.	1.7	60
23	Regioselective Synthesis of Fluoroalkylated \hat{l}^2 -Aminophosphorus Derivatives and Aziridines from Phosphorylated Oximes and Nucleophilic Reagents. Journal of Organic Chemistry, 2006, 71, 6141-6148.	1.7	60
24	Aza-Wittig reaction of N-phosphorylalkyl phosphazenes with carbonyl compounds and phenylisocyanate. Synthesis of 4-amino-3-phosphoryl-2-azadienes and pyrazine-phosphonates. Tetrahedron, 2003, 59, 2617-2623.	1.0	59
25	An efficient and mild conditions synthesis of 2-aza-1,3-dienes fromphospha-l̂»5-azenes Tetrahedron Letters, 1988, 29, 4863-4864.	0.7	58
26	Easy and efficient synthesis of enantiomerically enriched 2H-azirines derived from phosphonates. Tetrahedron Letters, 2000, 41, 5363-5366.	0.7	58
27	Copper-Catalyzed Asymmetric Conjugate Addition of Diethylzinc to î±,î²-Unsaturated Imines Derived from α-Aminoacids. Enantioselective Synthesis of î³-Substituted α-Dehydroaminoesters. Organic Letters, 2006, 8, 5405-5408.	2.4	57
28	Reaction of N-Vinylic Phosphazenes Derived from \hat{l}^2 -Amino Acids with Aldehydes. Azadiene-Mediated Synthesis of Dihydropyridines, Pyridines, and Polycyclic Nitrogen Derivatives. Journal of Organic Chemistry, 1999, 64, 6239-6246.	1.7	56
29	Cycloaddition Reaction of 2-Azadienes Derived from \hat{l}^2 -Amino Acids with Electron-Rich and Electron-Deficient Alkenes and Carbonyl Compounds. Synthesis of Pyridine and 1,3-Oxazine Derivatives. Journal of Organic Chemistry, 2002, 67, 2131-2135.	1.7	56

30

#	Article	IF	CITATIONS
37	Lewis Acid Activated Azaâ€Diels–Alder Reaction of <i>N</i> à€(3â€Pyridyl)aldimines: An Experimental and Computational Study. European Journal of Organic Chemistry, 2010, 2010, 2091-2099.	1.2	51
38	Preparation of Fluoroalkyl Imines, Amines, Enamines, Ketones, α-Amino Carbonyls, and α-Amino Acids from Primary Enamine Phosphonates. Journal of Organic Chemistry, 2004, 69, 8767-8774.	1.7	50
39	Efficient Synthesis of 1-Azadienes Derived from α-Aminoesters. Regioselective Preparation of α-Dehydroamino Acids, Vinylglycines, and α-Amino Acids. Journal of Organic Chemistry, 2006, 71, 7690-7696.	1.7	48
40	A Convenient Synthesis of Substituted Pyrazolidines and Azaproline Derivatives through Highly Regio- and Diastereoselective Reduction of 2-Pyrazolines. Journal of Organic Chemistry, 2008, 73, 550-557.	1.7	47
41	A new and efficient synthesis of imidazo [1,5-a] pyridine derivatives by a tandem aza-Wittig electrocyclic ring closure of N-vinylic phosphazenes. Tetrahedron, 1995, 51, 3683-3690.	1.0	46
42	Aza-Wittig reaction of fluoroalkylated N-vinylic phosphazenes with carbonyl compounds. Usefulness of 2-azadienes for the preparation of fluoroalkyl pyridine derivatives. Tetrahedron, 2005, 61, 2779-2794.	1.0	46
43	Reactivity and selectivity of N-vinylic \hat{I} »5-phosphazenes towards electrophiles. Synthesis of 2-aza-1,3-dienes. Journal of the Chemical Society Perkin Transactions 1, 1990, , 2193-2197.	0.9	45
44	Conjugate Addition of Amines to an $\hat{l}\pm,\hat{l}^2$ -Unsaturated Imine Derived from $\hat{l}\pm$ -Aminophosphonate. Synthesis of \hat{l}^3 -Amino- $\hat{l}\pm$ -dehydroaminophosphonates. Journal of Organic Chemistry, 2009, 74, 452-455.	1.7	45
45	Facile and efficient preparation of the unknown primary \hat{l}^2 -enaminophosphines. Synthesis of the first 1,3,4-diaza- \hat{l} »5-phosphinines Tetrahedron Letters, 1987, 28, 2875-2878.	0.7	43
46	Synthesis of Fluoroalkylated \hat{l}^2 -Aminophosphonates and Pyridines from Primary \hat{l}^2 -Enaminophosphonates. Journal of Organic Chemistry, 2008, 73, 4568-4574.	1.7	43
47	Antileishmanial effect of new indeno-1,5-naphthyridines, selective inhibitors of Leishmania infantum type IB DNA topoisomerase. European Journal of Medicinal Chemistry, 2016, 124, 740-749.	2.6	43
48	The hydrolysis of pentamethylcyclopentadienyltitanium trihalides and the formation of di-, tri-, and tetra-nuclear \hat{l} /4-oxo complexes. Crystal structure of [(C5Me5)TiBr(\hat{l} -/4-O)]4CHCl3, which contains a Ti4O4 ring. Journal of Organometallic Chemistry, 1989, 375, 51-58.	0.8	42
49	Synthesis and Reactivity of Imines Derived from Bisphosphonates and 3-Phosphorylated 2-Aza-1,3-dienes. Tetrahedron, 2000, 56, 6319-6330.	1.0	42
50	Fluoroalkyl $\hat{l}\pm\hat{J}^2$ -Unsaturated Imines. Valuable Synthetic Intermediates from Primary Fluorinated Enamine Phosphonates. Organic Letters, 2002, 4, 769-772.	2.4	42
51	Reaction of N-Vinylic Phosphazenes with $\hat{l}\pm,\hat{l}^2$ -Unsaturated Aldehydes. Azatriene-Mediated Synthesis of Dihydropyridines and Pyridines Derived from \hat{l}^2 -Amino Acids. Journal of Organic Chemistry, 2006, 71, 6020-6030.	1.7	42
52	Synthesis of \hat{l}_{\pm} -Phosphorylated \hat{l}_{\pm},\hat{l}^2 -Unsaturated Imines and Their Selective Reduction to Vinylogous and Saturated \hat{l}_{\pm} -Aminophosphonates. Journal of Organic Chemistry, 2007, 72, 2682-2685.	1.7	42
53	Selective Synthesis of \hat{l}_{\pm} -Fluoro- \hat{l}_{\pm} -keto- and \hat{l}_{\pm} -Fluoro- \hat{l}_{\pm} -aminophosphonates via Electrophilic Fluorination by Selectfluor. Journal of Organic Chemistry, 2011, 76, 1170-1173.	1.7	42
54	Asymmetric Synthesis of Functionalized Tetrasubstituted α-Aminophosphonates through Enantioselective Aza-Henry Reaction of Phosphorylated Ketimines. Journal of Organic Chemistry, 2015, 80, 156-164.	1.7	41

#	Article	IF	CITATIONS
55	Synthesis and biological evaluation of indeno [1,5] naphthyridines as topoisomerase I (TopI) inhibitors with antiproliferative activity. European Journal of Medicinal Chemistry, 2016, 115, 179-190.	2.6	41
56	Synthesis of Polyfunctionalized 1-Aminobuta-1,3-dienes by Addition of Dimethyl Acetylenedicarboxylate to (Z)betaEnaminolambda.5-Phosphazenes. Configurational and Conformational Analysis Based on NOE Data, nJPX Coupling Constant, X-ray Structures, and Semiempirical Calculations. Journal of Organic Chemistry, 1994, 59, 1984-1992.	1.7	39
57	An efficient strategy for the regioselective synthesis of 3-phosphorylated-1-aminopyrroles from \hat{l}^2 -hydrazono phosphine oxides and phosphonates. Tetrahedron, 1999, 55, 13767-13778.	1.0	39
58	[4+2] Cycloadditions of 3â€Tetrazolylâ€1,2â€diazaâ€1,3â€butadienes: Synthesis of 3â€Tetrazolylâ€1,4,5,6â€tetrahydropyridazines. European Journal of Organic Chemistry, 2012, 2012, 2152-2160.	1.2	39
59	Multicomponent reactions (MCRs): a useful access to the synthesis of benzo-fused \hat{I}^3 -lactams. Beilstein Journal of Organic Chemistry, 2019, 15, 1065-1085.	1.3	39
60	One pot synthesis of 2-vinyl-1-azadienes and divinylketones. Tetrahedron Letters, 1989, 30, 5493-5496.	0.7	38
61	An efficient and general strategy for the synthesis of 4-phosphorylated pyrazoles from \hat{l}^2 -hydrazono phosphine oxides. Tetrahedron, 1996, 52, 4123-4132.	1.0	38
62	Selective Synthesis of Substituted Pyrrole-2-phosphine Oxides and -phosphonates from 2 <i>H</i> -Azirines and Enolates from Acetyl Acetates and Malonates. Journal of Organic Chemistry, 2011, 76, 9472-9477.	1.7	38
63	Molecular structure of trichloro(η5-pentamethylcyclopentadienyl)zirconium(IV). Journal of Organometallic Chemistry, 1994, 480, c10-c11.	0.8	37
64	Preparation of 3-(Fluoroalkyl)-2-azadienes and Its Application in the Synthesis of (Fluoroalkyl)isoquinoline and -pyridine Derivatives. European Journal of Organic Chemistry, 2005, 2005, 1795-1804.	1.2	37
65	A simple and efficient "one-pot―synthesis of 2-aza-1,3-butadienes from N-vinylic λ5phosphazenes. Tetrahedron Letters, 1990, 31, 3497-3500.	0.7	36
66	Regioselective synthesis of 4- and 5-oxazole-phosphine oxides and -phosphonates from 2H-azirines and acyl chlorides. Tetrahedron, 2004, 60, 8937-8947.	1.0	36
67	Antileishmanial activity of new hybrid tetrahydroquinoline and quinoline derivatives with phosphorus substituents. European Journal of Medicinal Chemistry, 2019, 162, 18-31.	2.6	36
68	Cycloaddition Reactions of Phosphorylated 1,2-Diaza-1,3-butadienes with Olefins: Regioselective Synthesis of Pyridazine Derivatives. European Journal of Organic Chemistry, 2005, 2005, 1142-1147.	1.2	35
69	A simple synthesis of 3H- \hat{l} »5-phosphole derivatives from alkyldiphenylphosphine imines and dimethyl acetylenedicarboxylate. Journal of the Chemical Society Chemical Communications, 1986, .	2.0	34
70	A simple and efficient synthesis of 2-amino-1,3-butadienes from \hat{l}^2 -enamino phosphonium salts. Tetrahedron Letters, 1990, 31, 6713-6716.	0.7	34
71	Reactions of Conjugate Phosphinyl- and Phosphonyl-Nitroso Alkenes with Enamines. Preparation of N-Hydroxypyrrole Derivatives. Journal of Organic Chemistry, 2009, 74, 3444-3448.	1.7	34
72	An Efficient Synthesis of N-Phosphorylated Azadienes, Primary (E)-Allylamines, and \hat{l}^2 -Amino-Phosphane Oxides and -Phosphonates from \hat{l}^2 -Functionalized Oxime Derivatives. European Journal of Organic Chemistry, 1998, 1998, 1413-1423.	1.2	33

#	Article	IF	CITATIONS
73	A simple synthesis of 4-aza-λ5-phosphinines from Z-1,5-diaza-2λ5-phosphapenta-1,3-dienes and dimethyl acetylenedicarboxylate. Journal of the Chemical Society Chemical Communications, 1985, , 1681-1682.	2.0	32
74	A regioselective synthesis of 5-pyrazolones and pyrazoles from phosphazenes derived from hydrazines and acetylenic esters. Tetrahedron, 1999, 55, 14451-14458.	1.0	32
75	Synthesis of functionalized \hat{l}_{\pm} -amino-phosphine oxides and -phosphonates by addition of amines and aminoesters to 4-phosphinyl- and 4-phosphonyl-1,2-diaza-1,3-butadienes. Tetrahedron, 2005, 61, 2815-2830.	1.0	32
76	Michael Addition of Amine Derivatives to Conjugate Phosphinyl and Phosphonyl Nitrosoalkenes. Preparation of α-Amino Phosphine Oxide and Phosphonate Derivatives. Journal of Organic Chemistry, 2007, 72, 5202-5206.	1.7	32
77	An improved and effective method for the preparation of $\hat{l}\pm,\hat{l}^2$ -unsaturated oximes and isoxazole derivatives. Tetrahedron, 1998, 54, 599-614.	1.0	31
78	A convenient synthesis of racemic and optically active 1-aza-1,3-dienes derived from \hat{I}^3 -amino esters: reduction to \hat{I}^2 -unsaturated and saturated \hat{I}^3 -amino acid derivatives. Tetrahedron, 2001, 57, 3131-3141.	1.0	31
79	Synthesis of Quinolinylphosphane Oxides and -phosphonates from N-Arylimines Derived from Phosphane Oxides and Phosphonates. European Journal of Organic Chemistry, 2002, 2002, 4131-4136.	1.2	31
80	Synthesis of Fluorinated \hat{l}^2 -Aminophosphonates and \hat{l}^3 -Lactams. Journal of Organic Chemistry, 2013, 78, 3858-3866.	1.7	31
81	Study of the Hetero-[4+2]-Cycloaddition Reaction of Aldimines and Alkynes. Synthesis of 1,5-Naphthyridine and Isoindolone Derivatives. Journal of Organic Chemistry, 2017, 82, 6379-6387.	1.7	31
82	Brönsted-Acid-Catalyzed Asymmetric Three-Component Reaction of Amines, Aldehydes, and Pyruvate Derivatives. Enantioselective Synthesis of Highly Functionalized \hat{I}^3 -Lactam Derivatives. Organic Letters, 2018, 20, 317-320.	2.4	31
83	Synthesis of Diethyl 1,2,3-Triazolealkylphosphonates through 1,3-Dipolar Cycloaddition of Azides with Acetylenes. Heterocycles, 1994, 38, 95.	0.4	31
84	Reactions of N-alkoxycarbonyl alkyldiphenyl-î»5-phosphazenes with acetylene esters. Synthesis of 1-aza-2-oxo-4î»5-phosphinines. Journal of Organometallic Chemistry, 1990, 382, 61-67.	0.8	30
85	Reaction of N -Vinylic phosphazenes with carbonyl compounds. Reactivity of the vinyl side chain versus Aza-Wittig reaction. Tetrahedron, 1996, 52, 4857-4866.	1.0	30
86	Aza-Wittig reaction of N-vinylic phosphazenes with carbonyl compounds. Azadiene-mediated synthesis of dihydropyridines and pyridines. Tetrahedron Letters, 1996, 37, 6379-6382.	0.7	30
87	Synthesis of 3-phosphorylated 2-aza-1,3-dienes from imines derived from bisphosphonates. Tetrahedron Letters, 1999, 40, 2411-2414.	0.7	30
88	Synthesis of optically active oxazoles from phosphorylated 2H-azirines and N-protected amino acids or peptides. Tetrahedron: Asymmetry, 2002, 13, 2541-2552.	1.8	30
89	Hetero-Diels–Alder Reaction of Phosphorylated Nitroso Alkenes with Enol Ethers on Water: A Clean Approach Toward 1,2-Oxazine Derivatives. Journal of Organic Chemistry, 2014, 79, 7607-7615.	1.7	30
90	Reaction of $2 < i > H < /i > -Azirine$ -Phosphine Oxides and -Phosphonates with Enolates Derived from \hat{l}^2 -Keto Esters. Journal of Organic Chemistry, 2016, 81, 100-108.	1.7	30

#	Article	IF	CITATIONS
91	Mechanistic aspects of the reaction of some phosphonium ylides with alkyl propynoates Tetrahedron Letters, 1988, 29, 381-384.	0.7	29
92	1,3-Dipolar Cycloadditions of Azidoalkylphosphonates to Enamines. Systhesis of D2-1,2,3-triazolines and Triazoles. Heterocycles, 1995, 40, 543.	0.4	29
93	Cycloaddition Reactions of Neutral 2-Azadienes with Enamines â^ Regiospecific Synthesis of Highly Substituted Dihydropyridines and Pyridines. European Journal of Organic Chemistry, 2001, 2001, 2115-2122.	1.2	29
94	A simple strategy for the preparation of 4-aminoquinolines from \hat{l}^2 -functionalized enamines. Tetrahedron, 1998, 54, 1647-1656.	1.0	28
95	A simple and efficient strategy for the preparation of 5-phosphorylated imidazol-2-ones from primary \hat{l}^2 -enaminophosphonates. Tetrahedron, 1998, 54, 2281-2288.	1.0	28
96	Catalytic Asymmetric Darzens and Azaâ€Darzens Reactions for the Synthesis of Chiral Epoxides and Aziridines. ChemCatChem, 2018, 10, 5092-5114.	1.8	28
97	Preparation and reactions of 3-phosphinyl-1-aza-1,3-butadienes. Synthesis of phosphorylated pyridine and pyrazole derivatives. Tetrahedron, 2006, 62, 1095-1101.	1.0	27
98	Diastereoselective hydrophosphonylation of imines using (R,R)-TADDOL phosphite. Asymmetric synthesis of α-aminophosphonic acid derivatives. Organic and Biomolecular Chemistry, 2010, 8, 4255.	1.5	27
99	Diels–Alder reactions of 3-(1H-tetrazol-5-yl)-nitrosoalkenes: synthesis of functionalized 5-(substituted)-1H-tetrazoles. Tetrahedron, 2011, 67, 8902-8909.	1.0	27
100	Synthesis of novel antiproliferative hybrid bis-(3-indolyl)methane phosphonate derivatives. European Journal of Medicinal Chemistry, 2018, 158, 874-883.	2.6	27
101	Synthesis of 5-Phosphonyl-2(1H)-pyridones from Primary b-Enaminophosphonate and Acetylenic Esters. Heterocycles, 1995, 41, 1915.	0.4	27
102	A simple synthesis of the first 1-2λ5-benzazaphosphinine ring Tetrahedron Letters, 1987, 28, 4327-4328.	0.7	26
103	An improved and general method for the synthesis of $\hat{l}\pm,\hat{l}^2$ -unsaturated oximes from phosphine oxide allenes. Tetrahedron Letters, 1996, 37, 1289-1292.	0.7	26
104	Synthesis of pentasubstituted pyridines. Cycloadditions of N -vinylic heterocumulenes with 1-(N , N) Tj ETQq0 0	0 rgBT /Ov	verlock 10 Tf
105	Nucleophilic trifluoromethylation of carbonyl compounds and derivatives. Arkivoc, 2014, 2014, 362-405.	0.3	26
106	Enantioselective α-Aminophosphonate Functionalization of Indole Ring through an Organocatalyzed Friedel–Crafts Reaction. Journal of Organic Chemistry, 2019, 84, 1094-1102.	1.7	26
107	"ONE POT―SYNTHESIS OF β-FUNCTIONALIZED VINYL AZIDES THROUGH ADDITION OF TETRAMETYLGUANIDINIUM AZIDE TO ACETYLENIC AND ALLENIC COMPOUNDS. Organic Preparations and Procedures International, 1995, 27, 171-178.	0.6	25
108	Free and Supported Phosphorus Ylides as Strong Neutral Brønsted Bases. Journal of Organic Chemistry, 1999, 64, 3741-3744.	1.7	25

#	Article	IF	CITATIONS
109	Efficient synthesis of fluorinated \hat{l} [±] - and \hat{l} ² -amino nitriles from fluoroalkylated \hat{l} [±] , \hat{l} ² -unsaturated imines. Tetrahedron, 2011, 67, 1575-1579.	1.0	25
110	Enantioselective Aza-Reformatsky Reaction with Ketimines. Organic Letters, 2019, 21, 9473-9477.	2.4	25
111	An Efficient and General Strategy for The Synthesis of SecondaryE-Allylamines from Phosphorylated Allenes. Synlett, 1994, 1994, 260-262.	1.0	24
112	N-Phosphino- and N-Phosphonionitrilimines:  From Nucleophilic to Electrophilic 1,3-Dipoles. Journal of Organic Chemistry, 1997, 62, 292-296.	1.7	24
113	An efficient and general method for the synthesis of 3-phosphorylated 4-aminoquinolines from \hat{l}^2 -phosphine oxide and phosphonate enamines. Tetrahedron, 1997, 53, 2931-2940.	1.0	24
114	Addition of amine derivatives to phosphorylated 1,2-diaza-1,3-butadienes. Synthesis of \hat{l}_{\pm} -aminophosphonates. Tetrahedron Letters, 2004, 45, 4345-4348.	0.7	24
115	Diastereoselective Azaâ€Baylis–Hillman Reactions: Synthesis of Chiral αâ€Allenylamines and 2â€Azetines from Allenic Esters. European Journal of Organic Chemistry, 2010, 2010, 3249-3256.	1.2	24
116	The Neber Approach to 2-(Tetrazol-5-yl)-2 <i>H</i> -Azirines. Journal of Organic Chemistry, 2013, 78, 6983-6991.	1.7	24
117	Preparation of the compounds ($\hat{1}/4$ -O)[Ti(C5Me5)R2]2 (R = Me, CH2Ph, or CH2SiMe3) and the crystal structure of the derivative with R = CH2SiMe3. Journal of Organometallic Chemistry, 1989, 375, 59-65.	0.8	23
118	A new and efficient strategy for the preparation of 1,5,2-diazaphosphorines from primary \hat{l}^2 -enaminophosphonates. Tetrahedron, 1999, 55, 3091-3104.	1.0	23
119	Straightforward synthesis and biological evaluation as topoisomerase I inhibitors and antiproliferative agents of hybrid Chromeno[4,3-b][1,5]Naphthyridines and Chromeno[4,3-b][1,5]Naphthyridin-6-ones. European Journal of Medicinal Chemistry, 2019, 178, 752-766.	2.6	23
120	First synthesis of merged hybrids phosphorylated azirino [2,1-b] benzo [e] [1,3] oxazine derivatives as anticancer agents. European Journal of Medicinal Chemistry, 2020, 185, 111771.	2.6	23
121	Reactivity and chemoselectivity of primary $Z\hat{l}^2$ -enamino- \hat{l} »5-phosphazenes towards electrophiles. Journal of the Chemical Society Perkin Transactions 1, 1988, , 2329-2334.	0.9	22
122	Hetero-Diels–Alder Reaction of Phosphinyl and Phosphonyl Nitroso Alkenes with Conjugated Dienes: An Aza-Cope Rearrangement. Journal of Organic Chemistry, 2011, 76, 6715-6725.	1.7	22
123	CYCLOADDITIONS OF AZIDOALKYLCARBOXYLATES TO ACETYLENES AND ENAMINES. REGIOSELECTIVE SYNTHESIS OF SUBSTITUTED TRIAZOLES. Organic Preparations and Procedures International, 1995, 27, 603-612.	0.6	21
124	An easy strategy for the synthesis of 5-phosphorylated pyrimidin-2,4-diones from \hat{l}^2 -phosphine oxide and phosphonate enamines. Tetrahedron, 1999, 55, 3105-3116.	1.0	21
125	Synthesis of Amidines Derived from Phosphonates and Phosphane Oxides â ^{-,} Amidine-Mediated Preparation of Phosphorylated Oxazolines. European Journal of Organic Chemistry, 2003, 2003, 913-919.	1,2	21
126	Regioselective synthesis of fluoroalkyl pyridine derivatives from 3-fluoroalkyl substituted 2-aza-1,3-butadienes. Tetrahedron Letters, 2004, 45, 4031-4034.	0.7	21

#	Article	IF	CITATIONS
127	Glyoxalateâ€Derived Aldimines in Cycloaddition Reactions with Olefins. European Journal of Organic Chemistry, 2011, 2011, 4318-4326.	1.2	21
128	A diastereoselective aza-Diels–Alder reaction of N-aryl-1-azadienes derived from α-amino acids with enamines. Tetrahedron Letters, 2011, 52, 4109-4111.	0.7	21
129	Synthesis of novel hybrid quinolino[4,3-b][1,5]naphthyridines and quinolino[4,3-b][1,5]naphthyridin-6(5H)-one derivatives and biological evaluation as topoisomerase I inhibitors and antiproliferatives. European Journal of Medicinal Chemistry, 2020, 195, 112292.	2.6	21
130	Reaction of (Z)- \hat{l}^2 -enamino \hat{l} »5-phosphazenes and dimethyl acetylenedicarboxylate. Journal of the Chemical Society Perkin Transactions 1, 1989, , 2273-2277.	0.9	20
131	Fluoroalkylated α,βâ€Unsaturated Imines: Efficient and Versatile Substrates for the Synthesis of Fluorinated Vinylogous βâ€Amino Esters and 3,4â€Dihydropyridinâ€2â€ones. European Journal of Organic Chemistry, 2010, 2010, 6618-6626.	1.2	20
132	Synthesis of 2-Oxo-2,5-dihydropyrroles; A Structural Reassignment. Synthesis, 1981, 1981, 200-201.	1.2	19
133	Aza-Diels–Alder reaction of α,β-unsaturated sulfinylimines derived from α-amino acids with enolethers and enamines. Tetrahedron Letters, 2007, 48, 6747-6750.	0.7	19
134	Substituted 1,5-naphthyridine derivatives as novel antileishmanial agents. Synthesis and biological evaluation. European Journal of Medicinal Chemistry, 2018, 152, 137-147.	2.6	19
135	α″minophosphonates: Useful Intermediates for Enantioselective Synthesis of αâ€Aminophosphonates. Asian Journal of Organic Chemistry, 2020, 9, 538-548.	1.3	19
136	A patent review of topoisomerase I inhibitors (2016–present). Expert Opinion on Therapeutic Patents, 2021, 31, 473-508.	2.4	19
137	1,3-dipolar cycloadditions of aromatic azoxy compounds to strained cyclo-alkenes. Tetrahedron Letters, 1982, 23, 55-58.	0.7	18
138	Regioselective Alkylation Reactions of Enamines Derived from Phosphane Oxides â° Synthesis of Phosphorus Substituted Enamino Esters, Î-Amino-phosphonates, Pyridone Derivatives and Pyrroles. European Journal of Organic Chemistry, 2001, 2001, 3357.	1.2	18
139	Reaction of acetylenic esters and N-functionalized phosphazenes. 1,2- versus 1,4-addition of N-vinylic phosphazenes. Organic and Biomolecular Chemistry, 2003, 1, 1112-1118.	1.5	18
140	Carbonyl Insertions into Metal-Nitrogen Bonds of Group 4 Dialkylamido Complexes. X-ray Structure of Cp*(Me2N)2Ti[O(Me2N)C]W(CO)5. Organometallics, 1995, 14, 131-136.	1.1	17
141	A simple route to novel 2,5-dihydro-1,5,2-diazaphosphinines from primary enamine phosphonates. Tetrahedron Letters, 2002, 43, 5917-5919.	0.7	17
142	N-Vinylic Phosphazenes. A Useful Tool for the Synthesis of Acyclic and Heterocyclic Compounds. Current Organic Chemistry, 2006, 10, 2371-2392.	0.9	17
143	Reliable Synthesis of Phosphino―and Phosphine Sulfideâ€1,2,3,4â€Tetrahydroquinolines and Phosphine Sulfide Quinolines. European Journal of Organic Chemistry, 2017, 2017, 2916-2924.	1.2	17
144	Multicomponent Reactions in the Synthesis of \hat{l}^3 -Lactams. Synthesis, 2018, 50, 4539-4554.	1.2	17

#	Article	IF	CITATIONS
145	A Br \tilde{A} ,nsted Acid-Catalyzed Multicomponent Reaction for the Synthesis of Highly Functionalized \hat{I}^3 -Lactam Derivatives. Molecules, 2019, 24, 2951.	1.7	17
146	Synthesis and biological evaluation of cyanoaziridine phosphine oxides and phosphonates with antiproliferative activity. European Journal of Medicinal Chemistry, 2019, 163, 736-746.	2.6	17
147	Brönsted Acid Catalyzed Multicomponent Synthesis of Phosphorus and Fluorine-Derived γ-Lactam Derivatives. Journal of Organic Chemistry, 2020, 85, 14369-14383.	1.7	17
148	Reaction of \hat{l}_{\pm} -metallated N-acyl- \hat{l}_{ν} 5-phosphazenes with aryl cyanides. Journal of the Chemical Society Perkin Transactions 1, 1989, , 615-618.	0.9	16
149	Synthesis and reactions of \hat{l}^2 -enamino phosphonium salts. Preparation of 2-vinyl-1-aza-1,3-dienes and penta-1,4-dien-3-ones. Journal of the Chemical Society Perkin Transactions 1, 1991, , 341-345.	0.9	16
150	Easy and Efficient Generation of Reactive Anions with Free and Supported Ylides as Neutral BrÃ, nsted Bases. Tetrahedron, 2000, 56, 663-669.	1.0	16
151	Synthesis and subsequent reactivity of 1-amino-2-aza-1,3-butadienes derived from \hat{l}^2 -amino esters. Tetrahedron Letters, 2006, 47, 7815-7818.	0.7	16
152	Reaction of 4-Amino-1-azabutadiene Derivatives with Phosphorus(III) Halides: Synthesis of 1,2-Dihydro-1,3,2-P III-diazaphosphorine Derivatives. Synthesis, 1985, 1985, 309-311.	1.2	15
153	Regioselective Synthesis of 1-Alkyl-1-phenylhydrazines, 2-Alkyl-1-phenylhydrazines, and 1,2-Dialkyl-1-phenylhydrazines. Synthesis, 1990, 1990, 398-400.	1.2	15
154	Preparation and reactivity of electron-poor 2-azadienes. Diels-Alder reaction with trans-cyclooctene Tetrahedron Letters, 1993, 34, 4377-4380.	0.7	15
155	Synthesis and characterisation of chlorobis (dialkylamido) and alkylbis (dialkylamido) derivatives of $[(\hat{l}/25\text{-C5Me5})\text{MCl3}]$ (M = Ti,Zr). Journal of Organometallic Chemistry, 1995, 494, 255-259.	0.8	15
156	Reactions of N-vinylic phosphazenes with azodicarboxylic and acetylenic esters. Tetrahedron, 2004, 60, 2469-2474.	1.0	15
157	Regioselective cycloaddition of 3-azatrienes with enamines. Synthesis of pyridines derived from \hat{l}^2 -aminoacids. Tetrahedron, 2006, 62, 7661-7666.	1.0	15
158	Regioselective synthesis of pyrrolin-3-ones and 2,3,4,5-tetrahydro[1,3]-oxazines from N-vinylic amidines. Tetrahedron, 2009, 65, 1119-1124.	1.0	15
159	The design and discovery of topoisomerase I inhibitors as anticancer therapies. Expert Opinion on Drug Discovery, 2022, 17, 581-601.	2.5	15
160	Reaction of Schiff Bases with Diazenedicarboxylic Esters: Synthesis of 2-Oxo-2,3-dihydroimidazoles. Synthesis, 1981, 1981, 563-565.	1.2	14
161	A simple and efficient synthesis of $\hat{l}\pm\hat{l}^2$ -unasaturated hydrazones from functionalized ylides and phosphine oxides. Tetrahedron Letters, 1993, 34, 3481-3484.	0.7	14
162	Synthesis of novel 2,5-dihydro-1,5,2-diazaphosphinines from primary enamine phosphonates and from alkyl phosphonates. Tetrahedron, 2005, 61, 1087-1094.	1.0	14

#	Article	IF	CITATIONS
163	Regioselective synthesis of pyridines and dihydropyridines derived from \hat{l}^2 -amino acids and aminophosphonates by reaction of N-vinylic phosphazenes with $\hat{l}\pm,\hat{l}^2$ -unsaturated ketones. Tetrahedron, 2007, 63, 5669-5676.	1.0	14
164	Reactions of 1,2-diaza-1,3-dienes with thiol derivatives: a versatile construction of nitrogen/sulfur containing heterocycles. Tetrahedron, 2008, 64, 9264-9274.	1.0	14
165	An efficient and general strategy for the synthesis of 1,4-dihydro-l̂»3- and -l̂»5-azaphosphinines from 2-aza-1,3-dienes. Journal of the Chemical Society Chemical Communications, 1988, , 1596-1597.	2.0	13
166	Functionalized Phosphine Imides. Diastereoselective Synthesis of Î ² -Hydroxyphosphorylated Derivatives. Synthesis, 1988, 1988, 562-564.	1.2	13
167	Synthesis of N-Functionalized Carbodiimides, Hydantoins, 1,3-Diazetidines, and Imidazolidine Derivatives from N-Vinylic Phosphazenes Derived from b-Amino Acids. Heterocycles, 2001, 55, 1641.	0.4	13
168	Synthesis of Tetrasubstituted αâ€Aminophosphonic Acid Derivatives from Trisubstituted αâ€Aminophosphonates. European Journal of Organic Chemistry, 2013, 2013, 7095-7100.	1.2	13
169	Fused 1,5-Naphthyridines: Synthetic Tools and Applications. Molecules, 2020, 25, 3508.	1.7	13
170	Asymmetric Synthesis of Tetrasubstituted α-Aminophosphonic Acid Derivatives. Molecules, 2021, 26, 3202.	1.7	13
171	Synthesis and Biological Evaluation of 1,5-Naphthyridines as Topoisomerase I Inhibitors. A New Family of Antiproliferative Agents. Current Topics in Medicinal Chemistry, 2015, 14, 2722-2728.	1.0	13
172	Reaction of schiff bases with acrylamides. Synthesis of 2â€oxotetrahydropyridines. Journal of Heterocyclic Chemistry, 1983, 20, 65-67.	1.4	12
173	A new domino synthesis of polyfunctionalized pentasubstituted pyridines. Journal of the Chemical Society Chemical Communications, 1994, , 865-866.	2.0	12
174	Reactivity of Conjugated Phosphazenes Derived from Dehydroaspartic Esters with Acyl Halides. Synthesis of 5(4H)-Oxazolone. Heterocycles, 2000, 52, 1057.	0.4	12
175	Stereoselective formation of tertiary and quaternary carbon centers via inverse conjugate addition of carbonucleophiles to allenic esters. Tetrahedron, 2010, 66, 7720-7725.	1.0	12
176	Regioselective Conjugate Addition of Nitriles to α,βâ€Unsaturated Imines: Synthesis of Fluorinated Primary Enamines and 2â€Aminopyridine Derivatives. European Journal of Organic Chemistry, 2013, 2013, 5614-5620.	1.2	12
177	Advantages of an optical nanosensor system for the mechanistic analysis of a novel topoisomerase I targeting drug: a case study. Nanoscale, 2017, 9, 1886-1895.	2.8	12
178	An Efficient Synthesis of 3-Phosphorylated 4(1H)-Pyridones and 4-Chloropyridines fromb-Enaminophosphonates. Heterocycles, 1998, 47, 517.	0.4	12
179	Use of polymer-supported amines in catalytic nitroaldol reaction of nitroalkanes with aldehydes. Arkivoc, 2005, 2005, 405-414.	0.3	12
180	The Reaction of Arylhydrazones with Acetylenedicarboxylic Acid Esters. Synthesis, 1975, 1975, 642-643.	1.2	11

#	Article	lF	CITATIONS
181	Enantioselective Synthesis of Î ³ -Functionalized α-Dehydroamino Esters. Synthesis, 2007, 2007, 3923-3925.	1.2	11
182	Fused chromeno and quinolino[1,8]naphthyridines: Synthesis and biological evaluation as topoisomerase I inhibitors and antiproliferative agents. Bioorganic and Medicinal Chemistry, 2021, 40, 116177.	1.4	11
183	A Multicomponent Protocol for the Synthesis of Highly Functionalized \hat{l}^3 -Lactam Derivatives and Their Applications as Antiproliferative Agents. Pharmaceuticals, 2021, 14, 782.	1.7	11
184	Asymmetric Synthesis of \hat{l} ±-Substituted- \hat{l}^2 -Amino Phosphonates and Phosphinates and \hat{l}^2 -Amino Sulfur Analogs. , 2005, , 277-318.		10
185	Reaction of phosphinylated nitrosoalkenes with electron-rich heterocycles. Electrophilic aromatic substitution vs. cycloaddition. Organic and Biomolecular Chemistry, 2017, 15, 662-671.	1.5	10
186	Synthesis of α-Aminophosphonic Acid Derivatives Through the Addition of O- and S-Nucleophiles to 2H-Azirines and Their Antiproliferative Effect on A549 Human Lung Adenocarcinoma Cells. Molecules, 2020, 25, 3332.	1.7	10
187	[4+2] Cycloaddition Reactions of Neutral 2-Azadienes with Electron-deficient Dienophiles. Heterocycles, 2003, 61, 493.	0.4	10
188	Diastereofacial Selectivity in the Reaction of (C-1)-Metalated Alkyldiphenylphosphine Imides with Schiff Bases. Synthesis, 1989, 1989, 298-300.	1.2	9
189	α-Ketiminophosphonates: Synthesis and Applications. Phosphorus, Sulfur and Silicon and the Related Elements, 2011, 186, 638-643.	0.8	9
190	Natural deep eutectic solvents in the hetero-Diels–Alder approach to bis(indolyl)methanes. Monatshefte Für Chemie, 2019, 150, 1275-1288.	0.9	9
191	Novel phosphine sulphide gold(<scp>i</scp>) complexes: topoisomerase I inhibitors and antiproliferative agents. Dalton Transactions, 2020, 49, 7852-7861.	1.6	9
192	Stereo―and Regioselective [3+3] Annulation Reaction Catalyzed by Ytterbium: Synthesis of Bicyclic 1,4â€Dihydropyridines. Advanced Synthesis and Catalysis, 2021, 363, 4761.	2.1	9
193	Amide rhodium and iridium complexes derived from Z-N-phenyl,β-(amino)-4-methylstyryldiphenylphospha-1 λ5-azene. Polyhedron, 1987, 6, 1999-2002.	1.0	8
194	Stereoselective Syntheses of Allylic Amines Through Reduction of 1-Azadiene Intermediates. Tetrahedron, 2000, 56, 8179-8187.	1.0	8
195	New approach to exclusive formation of both enantiomers of \hat{l}^2 -amino acid derivatives. Tetrahedron, 2008, 64, 8141-8148.	1.0	8
196	New chiral building blocks of \hat{l}^2 -peptoid analogs. Tetrahedron, 2009, 65, 9116-9124.	1.0	8
197	Fluoroalkylated \hat{i}_{\pm},\hat{i}^2 -Unsaturated Imines as Synthons for the Preparation of Fluorinated Triazinane-2,4-diones and Dihydropyrimidin-2(1 <i>H</i>)-ones. Journal of Organic Chemistry, 2014, 79, 5173-5181.	1.7	8
198	Regioselective synthesis of dihydropyridines and pyridines derived from \hat{l}^2 -aminoacids from N-vinylic phosphazenes. Arkivoc, 2007, 2007, 397-407.	0.3	8

#	Article	IF	CITATIONS
199	Synthetic Strategies, Reactivity and Applications of 1,5-Naphthyridines. Molecules, 2020, 25, 3252.	1.7	7
200	Ugi Reaction on α-Phosphorated Ketimines for the Synthesis of Tetrasubstituted α-Aminophosphonates and Their Applications as Antiproliferative Agents. Molecules, 2021, 26, 1654.	1.7	7
201	Hybrid Quinolinyl Phosphonates as Heterocyclic Carboxylate Isosteres: Synthesis and Biological Evaluation against Topoisomerase 1B (TOP1B). Pharmaceuticals, 2021, 14, 784.	1.7	7
202	Cycloaddition Reactions of 1-Azadienes Derived from Hydrazones with Electron-deficient Dienophiles. Heterocycles, 2006, 67, 815.	0.4	7
203	Microwave-assisted reactions of allenic esters: [3+2] annulations and allenoate-Claisen rearrangement. Arkivoc, 2010, 2010, 70-81.	0.3	7
204	Multicomponent Synthesis of Unsaturated \hat{I}^3 -Lactam Derivatives. Applications as Antiproliferative Agents through the Bioisosterism Approach: Carbonyl vs. Phosphoryl Group. Pharmaceuticals, 2022, 15, 511.	1.7	7
205	Reactions of Ketimines and Ethyl Phenylpropiolate. Synthesis of 4-Oxodihydropyridines. Synthetic Communications, 1983, 13, 411-417.	1.1	6
206	1,3-DIPOLAR CYCLOADDITION OF AZIDOALKYLPHOSPHONATES AND CARBOXYLATES TO MALEIMIDE AND NAPHTHOQUINONE. Organic Preparations and Procedures International, 1995, 27, 625-635.	0.6	6
207	Molecular structures of tris(dimethylamido)-pentamethy-1-cyclopentadienyl-titanium and -zirconium, (î-C 5 Me 5)M(NMe 2) 3 , M=Ti or Zr, by gas electron diffraction; DFT calculations on the model compound (î-C 5 H 5)Ti(NMe 2) 3. Journal of Molecular Structure, 2001, 567-568, 295-301.	1.8	6
208	Selective 1,2- vs 1,4-Addition of N-Arylphosphazenes to \hat{l}^2 , \hat{l}^3 -Unsaturated \hat{l}_\pm -Ketoesters. Synthesis of Quinolinecarboxylates. Heterocycles, 2006, 70, 261.	0.4	6
209	Synthesis of Functionalized N-Vinyl Nitrogen-Containing Heterocycles. Synthesis, 2009, 2009, 2403-2407.	1.2	6
210	& amp; #945; -Hydroxyiminophosphonate, -phosphinate and -phosphonium Derivatives. Current Organic Synthesis, 2010, 7, 628-649.	0.7	6
211	Phosphorus substituted hydroxylamine and hydroxamic acid derivatives: synthesis and reactivity. Arkivoc, 2011, 2011, 221-253.	0.3	6
212	Conformational analysis of stabilized phosphonium ylides by 1H nuclear magnetic resonance spectroscopy. Journal of the Chemical Society Perkin Transactions II, 1988, , 903-907.	0.9	5
213	β-Hydroxyimino Phosphorus Derivatives. An Efficient Tool in Organic Synthesis. Current Organic Chemistry, 2011, 15, 1644-1660.	0.9	5
214	Seasonal Terpene Variation in Needles of Pinus radiata (Pinales: Pinaceae) Trees Attacked by Tomicus piniperda (Coleoptera: Scolytinae) and the Effect of Limonene on Beetle Aggregation. Journal of Insect Science, 2017, 17, .	0.6	5
215	Enantioselective synthesis of functionalized $\hat{l}\pm\hat{l}\pm$ -aminophosphonic acid derivatives. Phosphorus, Sulfur and Silicon and the Related Elements, 2019, 194, 287-291.	0.8	5
216	Synthesis and Antiproliferative Activity of Phosphorus Substituted 4-Cyanooxazolines, 2-Aminocyanooxazolines, 2-Iminocyanooxazolidines and 2-Aminocyanothiazolines by Rearrangement of Cyanoaziridines. Molecules, 2021, 26, 4265.	1.7	5

#	Article	IF	CITATIONS
217	Synthesis of hybrid phosphorated indenoquinolines and biological evaluation as topoisomerase I inhibitors and antiproliferative agents. Bioorganic and Medicinal Chemistry Letters, 2022, 57, 128517.	1.0	5
218	Reaction of Phenylhydrazones with Methyl Acrylate. Synthesis of 1-Phenylamino-2-oxo-1,2,3,4-tetrahydropyridine. Synthesis, 1974, 1974, 717-717.	1.2	4
219	Reaction of schiff bases with acryl esters. Synthesis of 2â€oxo―and 4â€oxotetrahydropyridines. Journal of Heterocyclic Chemistry, 1984, 21, 539-543.	1.4	4
220	Synthesis of Substituted Pyrroles from N-Vinylic Phosphazenes Derived from \hat{l}^2 -Amino Acids and \hat{l}_\pm -Bromo Ketones. Heterocycles, 2002, 58, 89.	0.4	4
221	Cycloaddition Reactions of Neutral 2-Azadienes with Acetylenic Esters. Heterocycles, 2004, 64, 229.	0.4	4
222	An efficient synthesis of functionalized \hat{l}_{\pm} -amino-phosphine oxides and -phosphonates by addition of aminoalcohols to 4-phosphorylated-1,2-diaza-1,3-butadienes. Arkivoc, 2005, 2005, 153-161.	0.3	4
223	Exploring the Synthetic Potential of γ-Lactam Derivatives Obtained from a Multicomponent Reaction—Applications as Antiproliferative Agents. Molecules, 2022, 27, 3624.	1.7	4
224	Synthesis of amino substituted 4â€oxoâ€1,2,3,4â€tetrahydropyridines from arylhydrazones and methyl acrylate. Journal of Heterocyclic Chemistry, 1986, 23, 447-448.	1.4	3
225	Phosphorated 1,2-Oxazabuta-1,3-dienes as Synthetic Tools for the Preparation of $\langle i \rangle \hat{i} \pm \langle j \rangle$ -Amino Phosphorus Derivatives and Functionalized Nitrogen-Containing Heterocycles. Phosphorus, Sulfur and Silicon and the Related Elements, 2011, 186, 735-741.	0.8	3
226	Design, synthesis and cytotoxic evaluation of diphenyl (quinolin-8-yl) phosphine oxides. Tetrahedron Letters, 2021, 70, 153019.	0.7	3
227	Simple and Fast DNA Based Sensor System for Screening of Small-Molecule Compounds Targeting Eukaryotic Topoisomerase 1. Pharmaceutics, 2021, 13, 1255.	2.0	3
228	Synthesis of pentasubstituted pyridines. Ilâ€"NMR study of the addition products of 1-(N,N-diethylamine)prop-1-yne to methyl 2-isothiocyanato-3-phenylpropenoate. Magnetic Resonance in Chemistry, 1994, 32, 646-651.	1.1	2
229	Domino Reaction for the Construction of New 2-Oxo[1,2,4]triazolo[5,1-c][1,4]thiazines. Synlett, 2009, 2009, 735-738.	1.0	2
230	Reaction of phosphinyl nitrosoalkenes with electron-rich heterocycles. Phosphorus, Sulfur and Silicon and the Related Elements, 2019, 194, 545-549.	0.8	2
231	Phosphinotripeptidic Inhibitors of Leucylaminopeptidases. International Journal of Molecular Sciences, 2021, 22, 5090.	1.8	2
232	Synthetic Applications of \hat{I}^2 -Functionalized Phosphorus Compounds. An Effective Strategy for the Preparation of Acyclic and Heterocyclic Compounds Derived from Amines and Hydrazones Phosphorus, Sulfur and Silicon and the Related Elements, 1996, 109, 401-404.	0.8	1
233	Free and supported phosphorus ylides: efficient, neutral non-nucleophilic Brønsted bases with a wide utility in organic synthesis. Comptes Rendus De L'Academie Des Sciences - Series IIc: Chemistry, 2000, 3, 261-265.	0.1	1
234	Aza-Wittig Reaction in Natural Product Syntheses. , 0, , 437-467.		1

#	Article	IF	CITATIONS
235	Synthesis and Reactivity of an 1,3-Oxazin-6-one Derived from α-Aminophosphonate. Phosphorus, Sulfur and Silicon and the Related Elements, 2011, 186, 729-734.	0.8	1
236	5-Ethoxy-1-(4-methoxyphenyl)-5-methyl-3-phenylimidazolidine-2,4-dione. MolBank, 2021, 2021, M1218.	0.2	1
237	A Dual-Sensor-Based Screening System for In Vitro Selection of TDP1 Inhibitors. Sensors, 2021, 21, 4832.	2.1	1
238	Synthesis of Quinolinealkylphosphine Oxides and -phosphonates from N-Arylimines Derived from Phosphine Oxides and Phosphonates. Heterocycles, 2003, 59, 257.	0.4	1
239	An Efficient Synthesis of 5-Phosphorylated 1,3,2-Diazaphosphinines from \hat{l}^2 -Functionalized Enamines Derived from Phosphine Oxides and Phosphonates. Heterocycles, 1999, 50, 645.	0.4	1
240	Naphthyridine Derivatives Induce Programmed Cell Death in Naegleria fowleri. Pharmaceuticals, 2021, 14, 1013.	1.7	1
241	A Simple Synthesis of 3H-λ5-Phosphole Derivatives from Alkyldiphenylphosphine Imines and Dimethyl Acetylenedicarboxylate. Phosphorous and Sulfur and the Related Elements, 1987, 30, 759-759.	0.2	0
242	Synthesis of Substituted Pyrroles from N-Vinylic Phosphazenes Derived from \hat{l}^2 -Amino Acids and \hat{l}_\pm -Bromo Ketones ChemInform, 2003, 34, no.	0.1	0
243	Asymmetric Synthesis of 2H-Azirines Derived from Phosphine Oxides Using Solid-Supported Amines. Ring Opening of Azirines with Carboxylic Acids ChemInform, 2003, 34, no.	0.1	0
244	Synthesis of Optically Active Oxazoles from Phosphorylated 2H-Azirines and N-Protected Amino Acids or Peptides ChemInform, 2003, 34, no.	0.1	0
245	Synthesis of Quinolinylphosphane Oxides and -phosphonates from N-Arylimines Derived from Phosphane Oxides and Phosphonates ChemInform, 2003, 34, no.	0.1	0
246	Synthesis of Quinolinealkylphosphine Oxides and -phosphonates from N-Arylimines Derived from Phosphine Oxides and Phosphonates ChemInform, 2003, 34, no.	0.1	0
247	Synthesis of Amidines Derived from Phosphonates and Phosphane Oxides — Amidine-Mediated Preparation of Phosphorylated Oxazolines ChemInform, 2003, 34, no.	0.1	0
248	Asymmetric Synthesis of 2H-Aziridine Phosphonates, and \hat{l} ±- or \hat{l} 2-Aminophosphonates from Enantiomerically Enriched 2H-Azirines ChemInform, 2003, 34, no.	0.1	0
249	Reaction of Acetylenic Esters and N-Functionalized Phosphazenes. 1,2-versus 1,4-Addition of N-Vinylic Phosphazenes ChemInform, 2003, 34, no.	0.1	0
250	Aza-Wittig Reaction of N-Phosphorylalkyl Phosphazenes with Carbonyl Compounds and Phenylisocyanate. Synthesis of 4-Amino-3-phosphoryl-2-azadienes and Pyrazine-Phosphonates ChemInform, 2003, 34, no.	0.1	0
251	[4 + 2] Cycloaddition Reactions of Neutral 2-Azadienes with Electron-Deficient Dienophiles ChemInform, 2004, 35, no.	0.1	0
252	Reactions of N-Vinylic Phosphazenes with Azodicarboxylic and Acetylenic Esters ChemInform, 2004, 35, no.	0.1	0

#	Article	IF	CITATIONS
253	Regioselective Synthesis of Fluoroalkyl Pyridine Derivatives from 3-Fluoroalkyl Substituted 2-Aza-1,3-butadienes ChemInform, 2004, 35, no.	0.1	O
254	Addition of Amine Derivatives to Phosphorylated 1,2-Diaza-1,3-butadienes: Synthesis of \hat{l}_{\pm} -Aminophosphonates ChemInform, 2004, 35, no.	0.1	0
255	Regioselective Synthesis of 4- and 5-Oxazole-phosphine Oxides and -phosphonates from 2H-Azirines and Acyl Chlorides ChemInform, 2005, 36, no.	0.1	0
256	Preparation of Fluoroalkyl Imines, Amines, Enamines, Ketones, ?-Amino Carbonyls, and ?-Amino Acids from Primary Enamine Phosphonates ChemInform, 2005, 36, no.	0.1	0
257	Synthesis of Novel 2,5-Dihydro-1,5,2-diazaphosphinines from Primary Enamine Phosphonates and from Alkyl Phosphonates ChemInform, 2005, 36, no.	0.1	0
258	Cycloaddition Reactions of Neutral 2-Azadienes with Acetylenic Esters ChemInform, 2005, 36, no.	0.1	0
259	Synthesis of Î ² -Aminophosphonates and -Phosphinates. ChemInform, 2005, 36, no.	0.1	0
260	Aza-Wittig Reaction of Fluoroalkylated N-Vinylic Phosphazenes with Carbonyl Compounds. Usefulness of 2-Azadienes for the Preparation of Fluoroalkyl Pyridine Derivatives ChemInform, 2005, 36, no.	0.1	0
261	Synthesis of Functionalized α-Amino-phosphine Oxides and -phosphonates by Addition of Amines and Aminoesters to 4-Phosphinyl- and 4-Phosphonyl-1,2-diaza-1,3-butadienes ChemInform, 2005, 36, no.	0.1	0
262	Preparation of 3-(Fluoroalkyl)-2-azadienes and Its Application in the Synthesis of (Fluoroalkyl)isoquinoline and -pyridine Derivatives ChemInform, 2005, 36, no.	0.1	0
263	\hat{l}^2 -Phosphono- and -Phosphinopeptides Derived from \hat{l}^2 -Amino- Phosphonic and -Phosphinic Acids. ChemInform, 2005, 36, no.	0.1	0
264	Synthesis of Heterocyclic Fused [1,5]naphthyridines by Intramolecular HDA Reactions. Proceedings (mdpi), 2019, 22, 93.	0.2	0
265	New Challenges in Drug Discovery – July 8–11, 2019, Vitoriaâ€Gasteiz, Spain. ChemMedChem, 2020, 15, 168-171.	1.6	0
266	Parasitic infectious diseases. European Journal of Medicinal Chemistry, 2020, 193, 112230.	2.6	0
267	Copper-catalyzed synthesis of aziridines. , 2021, , 1-48.		0
268	Stereoselective inverse conjugate addition of nitrogen and carbon nucleophiles to allenyl phosphine oxide. Synthesis of $\hat{l}\pm,\hat{l}^2$ -unsaturated phosphine oxides. Arkivoc, 2012, 2012, 54-62.	0.3	0