M Azim Surani

List of Publications by Citations

Source: https://exaly.com/author-pdf/6530399/m-azim-surani-publications-by-citations.pdf

Version: 2024-04-25

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

160 197 25,747 77 h-index g-index citations papers 16.3 6.93 29,156 213 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
197	mRNA-Seq whole-transcriptome analysis of a single cell. <i>Nature Methods</i> , 2009 , 6, 377-82	21.6	1813
196	Epigenetic reprogramming in mouse primordial germ cells. <i>Mechanisms of Development</i> , 2002 , 117, 15-7	23 .7	986
195	Endogenous siRNAs from naturally formed dsRNAs regulate transcripts in mouse oocytes. <i>Nature</i> , 2008 , 453, 539-43	50.4	894
194	Blimp1 is a critical determinant of the germ cell lineage in mice. <i>Nature</i> , 2005 , 436, 207-13	50.4	769
193	A molecular programme for the specification of germ cell fate in mice. <i>Nature</i> , 2002 , 418, 293-300	50.4	702
192	The polycomb-group gene Ezh2 is required for early mouse development. <i>Molecular and Cellular Biology</i> , 2001 , 21, 4330-6	4.8	683
191	Germline DNA demethylation dynamics and imprint erasure through 5-hydroxymethylcytosine. <i>Science</i> , 2013 , 339, 448-52	33.3	576
190	Resistance of IAPs to methylation reprogramming may provide a mechanism for epigenetic inheritance in the mouse. <i>Genesis</i> , 2003 , 35, 88-93	1.9	544
189	Genetic and epigenetic regulators of pluripotency. <i>Cell</i> , 2007 , 128, 747-62	56.2	529
188	Chromatin dynamics during epigenetic reprogramming in the mouse germ line. <i>Nature</i> , 2008 , 452, 877-	85 0.4	513
187	Dynamic equilibrium and heterogeneity of mouse pluripotent stem cells with distinct functional and epigenetic states. <i>Cell Stem Cell</i> , 2008 , 3, 391-401	18	500
186	Eomesodermin is required for mouse trophoblast development and mesoderm formation. <i>Nature</i> , 2000 , 404, 95-9	50.4	494
185	SOX17 is a critical specifier of human primordial germ cell fate. <i>Cell</i> , 2015 , 160, 253-68	56.2	490
184	Abnormal maternal behaviour and growth retardation associated with loss of the imprinted gene Mest. <i>Nature Genetics</i> , 1998 , 20, 163-9	36.3	463
183	Maternal microRNAs are essential for mouse zygotic development. <i>Genes and Development</i> , 2007 , 21, 644-8	12.6	427
182	Genomic imprinting determines methylation of parental alleles in transgenic mice. <i>Nature</i> , 1987 , 328, 248-51	50.4	423
181	A Unique Gene Regulatory Network Resets the Human Germline Epigenome for Development. <i>Cell</i> , 2015 , 161, 1453-67	56.2	417

(2011-2010)

180	Tracing the derivation of embryonic stem cells from the inner cell mass by single-cell RNA-Seq analysis. <i>Cell Stem Cell</i> , 2010 , 6, 468-78	18	407
179	RNA-Seq analysis to capture the transcriptome landscape of a single cell. <i>Nature Protocols</i> , 2010 , 5, 516	- 35 .8	383
178	Genome-wide reprogramming in the mouse germ line entails the base excision repair pathway. <i>Science</i> , 2010 , 329, 78-82	33.3	380
177	Naive pluripotency is associated with global DNA hypomethylation. <i>Nature Structural and Molecular Biology</i> , 2013 , 20, 311-6	17.6	378
176	Blimp1 associates with Prmt5 and directs histone arginine methylation in mouse germ cells. <i>Nature Cell Biology</i> , 2006 , 8, 623-30	23.4	377
175	Parental-origin-specific epigenetic modification of the mouse H19 gene. <i>Nature</i> , 1993 , 362, 751-5	50.4	377
174	Reprogramming of genome function through epigenetic inheritance. <i>Nature</i> , 2001 , 414, 122-8	50.4	367
173	MicroRNA biogenesis is required for mouse primordial germ cell development and spermatogenesis. <i>PLoS ONE</i> , 2008 , 3, e1738	3.7	356
172	Imprinting and the epigenetic asymmetry between parental genomes. <i>Science</i> , 2001 , 293, 1086-9	33.3	351
171	Epigenetic reversion of post-implantation epiblast to pluripotent embryonic stem cells. <i>Nature</i> , 2009 , 461, 1292-5	50.4	320
170	Stella is a maternal effect gene required for normal early development in mice. <i>Current Biology</i> , 2003 , 13, 2110-7	6.3	312
169	A role for Lin28 in primordial germ-cell development and germ-cell malignancy. <i>Nature</i> , 2009 , 460, 909-	1 3 0.4	306
168	Identification of an imprinted gene, Meg3/Gtl2 and its human homologue MEG3, first mapped on mouse distal chromosome 12 and human chromosome 14q. <i>Genes To Cells</i> , 2000 , 5, 211-20	2.3	292
167	MicroRNA expression profiling of single whole embryonic stem cells. <i>Nucleic Acids Research</i> , 2006 , 34, e9	20.1	282
166	H19 acts as a trans regulator of the imprinted gene network controlling growth in mice. <i>Development (Cambridge)</i> , 2009 , 136, 3413-21	6.6	272
165	Peg1/Mest imprinted gene on chromosome 6 identified by cDNA subtraction hybridization. <i>Nature Genetics</i> , 1995 , 11, 52-9	36.3	254
164	Regulatory principles of pluripotency: from the ground state up. Cell Stem Cell, 2014, 15, 416-430	18	247
163	The transcriptional and signalling networks of pluripotency. <i>Nature Cell Biology</i> , 2011 , 13, 490-6	23.4	247

162	Germ cell specification in mice. <i>Science</i> , 2007 , 316, 394-6	33.3	247
161	Specification and epigenetic programming of the human germ line. <i>Nature Reviews Genetics</i> , 2016 , 17, 585-600	30.1	246
160	Consequences of the depletion of zygotic and embryonic enhancer of zeste 2 during preimplantation mouse development. <i>Development (Cambridge)</i> , 2003 , 130, 4235-48	6.6	246
159	Development and applications of single-cell transcriptome analysis. <i>Nature Methods</i> , 2011 , 8, S6-11	21.6	230
158	Prmt5 is essential for early mouse development and acts in the cytoplasm to maintain ES cell pluripotency. <i>Genes and Development</i> , 2010 , 24, 2772-7	12.6	221
157	Peg3 imprinted gene on proximal chromosome 7 encodes for a zinc finger protein. <i>Nature Genetics</i> , 1996 , 12, 186-90	36.3	215
156	Dynamic heterogeneity and DNA methylation in embryonic stem cells. <i>Molecular Cell</i> , 2014 , 55, 319-31	17.6	210
155	DNA methylation dynamics during the mammalian life cycle. <i>Philosophical Transactions of the Royal Society B: Biological Sciences</i> , 2013 , 368, 20110328	5.8	202
154	A tripartite transcription factor network regulates primordial germ cell specification in mice. <i>Nature Cell Biology</i> , 2013 , 15, 905-15	23.4	187
153	Coadaptation in mother and infant regulated by a paternally expressed imprinted gene. <i>Proceedings of the Royal Society B: Biological Sciences</i> , 2004 , 271, 1303-9	4.4	169
152	Principles of early human development and germ cell program from conserved model systems. <i>Nature</i> , 2017 , 546, 416-420	50.4	156
151	Parallel mechanisms of epigenetic reprogramming in the germline. <i>Trends in Genetics</i> , 2012 , 28, 164-74	8.5	142
150	Self-renewing epiblast stem cells exhibit continual delineation of germ cells with epigenetic reprogramming in vitro. <i>Development (Cambridge)</i> , 2009 , 136, 3549-56	6.6	135
149	X chromosome activity in mouse XX primordial germ cells. <i>PLoS Genetics</i> , 2008 , 4, e30	6	129
148	Generation of stella-GFP transgenic mice: a novel tool to study germ cell development. <i>Genesis</i> , 2006 , 44, 75-83	1.9	128
147	Establishment of porcine and human expanded potential stem cells. <i>Nature Cell Biology</i> , 2019 , 21, 687-6	5 29 .4	127
146	Deterministic and stochastic allele specific gene expression in single mouse blastomeres. <i>PLoS ONE</i> , 2011 , 6, e21208	3.7	122
145	Trim28 Haploinsufficiency Triggers Bi-stable Epigenetic Obesity. <i>Cell</i> , 2016 , 164, 353-64	56.2	121

(2006-2013)

144	Prdm14 promotes germline fate and naive pluripotency by repressing FGF signalling and DNA methylation. <i>EMBO Reports</i> , 2013 , 14, 629-37	6.5	118
143	Reprogramming primordial germ cells into pluripotent stem cells. <i>PLoS ONE</i> , 2008 , 3, e3531	3.7	118
142	Epiblast stem cell-based system reveals reprogramming synergy of germline factors. <i>Cell Stem Cell</i> , 2012 , 10, 425-39	18	114
141	Promoter DNA methylation couples genome-defence mechanisms to epigenetic reprogramming in the mouse germline. <i>Development (Cambridge)</i> , 2012 , 139, 3623-32	6.6	111
140	Segregation of mitochondrial DNA heteroplasmy through a developmental genetic bottleneck in human embryos. <i>Nature Cell Biology</i> , 2018 , 20, 144-151	23.4	110
139	Embryonic germ cells from mice and rats exhibit properties consistent with a generic pluripotent ground state. <i>Development (Cambridge)</i> , 2010 , 137, 2279-87	6.6	110
138	NANOG alone induces germ cells in primed epiblast in vitro by activation of enhancers. <i>Nature</i> , 2016 , 529, 403-407	50.4	108
137	Steel factor controls primordial germ cell survival and motility from the time of their specification in the allantois, and provides a continuous niche throughout their migration. <i>Development</i> (Cambridge), 2009, 136, 1295-303	6.6	105
136	Normal germ line establishment in mice carrying a deletion of the Ifitm/Fragilis gene family cluster. <i>Molecular and Cellular Biology</i> , 2008 , 28, 4688-96	4.8	104
135	An imprinting element from the mouse H19 locus functions as a silencer in Drosophila. <i>Nature Genetics</i> , 1997 , 16, 171-3	36.3	96
134	Synergistic mechanisms of DNA demethylation during transition to ground-state pluripotency. <i>Stem Cell Reports</i> , 2013 , 1, 518-31	8	95
133	ERG-associated protein with SET domain (ESET)-Oct4 interaction regulates pluripotency and represses the trophectoderm lineage. <i>Epigenetics and Chromatin</i> , 2009 , 2, 12	5.8	89
132	220-plex microRNA expression profile of a single cell. <i>Nature Protocols</i> , 2006 , 1, 1154-9	18.8	88
131	Dppa2 and Dppa4 are closely linked SAP motif genes restricted to pluripotent cells and the germ line. <i>Stem Cells</i> , 2007 , 25, 19-28	5.8	86
130	How to make a primordial germ cell. <i>Development (Cambridge)</i> , 2014 , 141, 245-52	6.6	84
129	PRMT5 protects genomic integrity during global DNA demethylation in primordial germ cells and preimplantation embryos. <i>Molecular Cell</i> , 2014 , 56, 564-79	17.6	84
128	Essential role for Argonaute2 protein in mouse oogenesis. <i>Epigenetics and Chromatin</i> , 2009 , 2, 9	5.8	84
127	Loss of TSLC1 causes male infertility due to a defect at the spermatid stage of spermatogenesis. <i>Molecular and Cellular Biology</i> , 2006 , 26, 3595-609	4.8	84

126	Histone variant macroH2A marks embryonic differentiation in vivo and acts as an epigenetic barrier to induced pluripotency. <i>Journal of Cell Science</i> , 2012 , 125, 6094-104	5.3	82
125	Primordial germ-cell development and epigenetic reprogramming in mammals. <i>Current Topics in Developmental Biology</i> , 2013 , 104, 149-87	5.3	82
124	Xist-dependent imprinted X inactivation and the early developmental consequences of its failure. <i>Nature Structural and Molecular Biology</i> , 2017 , 24, 226-233	17.6	79
123	The role of exogenous fibroblast growth factor-2 on the reprogramming of primordial germ cells into pluripotent stem cells. <i>Stem Cells</i> , 2006 , 24, 1441-9	5.8	79
122	Imprinted genes and regulation of gene expression by epigenetic inheritance. <i>Current Opinion in Cell Biology</i> , 1996 , 8, 348-53	9	79
121	Cdkn1c (p57Kip2) is the major regulator of embryonic growth within its imprinted domain on mouse distal chromosome 7. <i>BMC Developmental Biology</i> , 2007 , 7, 53	3.1	77
120	Targeted chromosome elimination from ES-somatic hybrid cells. <i>Nature Methods</i> , 2007 , 4, 23-5	21.6	77
119	Chromatin dynamics and the role of G9a in gene regulation and enhancer silencing during early mouse development. <i>ELife</i> , 2015 , 4,	8.9	76
118	Resetting the epigenome beyond pluripotency in the germline. Cell Stem Cell, 2009, 4, 493-8	18	73
117	Specification of germ cell fate in mice. <i>Philosophical Transactions of the Royal Society B: Biological Sciences</i> , 2003 , 358, 1363-70	5.8	73
116	Genome imprinting and development in the mouse. <i>Development (Cambridge)</i> , 1990 , 108, 89-98	6.6	72
115	Methylation-dependent silencing at the H19 imprinting control region by MeCP2. <i>Nucleic Acids Research</i> , 2002 , 30, 1139-44	20.1	71
114	Beyond DNA: programming and inheritance of parental methylomes. <i>Cell</i> , 2013 , 153, 737-9	56.2	68
113	Blimp1 and the emergence of the germ line during development in the mouse. Cell Cycle, 2005, 4, 1736	-4407	68
112	Human antibody production in transgenic mice: expression from 100 kb of the human IgH locus. <i>European Journal of Immunology</i> , 1991 , 21, 1323-6	6.1	68
111	Genomic characterisation of a Fgf-regulated gradient-based neocortical protomap. <i>Development</i> (Cambridge), 2005 , 132, 3947-61	6.6	66
110	Simultaneous deletion of the methylcytosine oxidases Tet1 and Tet3 increases transcriptome variability in early embryogenesis. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2015 , 112, E4236-45	11.5	62
109	Germline and Pluripotent Stem Cells. Cold Spring Harbor Perspectives in Biology, 2015, 7,	10.2	61

(1991-2005)

108	Analysis of Esg1 expression in pluripotent cells and the germline reveals similarities with Oct4 and Sox2 and differences between human pluripotent cell lines. <i>Stem Cells</i> , 2005 , 23, 1436-42	5.8	61
107	iPS cells: mapping the policy issues. <i>Cell</i> , 2009 , 139, 1032-7	56.2	58
106	Stella modulates transcriptional and endogenous retrovirus programs during maternal-to-zygotic transition. <i>ELife</i> , 2017 , 6,	8.9	57
105	Influence of sex chromosome constitution on the genomic imprinting of germ cells. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2006 , 103, 11184-8	11.5	56
104	Rebuilding pluripotency from primordial germ cells. Stem Cell Reports, 2013, 1, 66-78	8	55
103	Generation of primordial germ cells from pluripotent stem cells. <i>Differentiation</i> , 2009 , 78, 116-23	3.5	53
102	On the origin of the human germline. <i>Development (Cambridge)</i> , 2018 , 145,	6.6	51
101	Pluripotency and X chromosome dynamics revealed in pig pre-gastrulating embryos by single cell analysis. <i>Nature Communications</i> , 2019 , 10, 500	17.4	50
100	The non-viability of uniparental mouse conceptuses correlates with the loss of the products of imprinted genes. <i>Mechanisms of Development</i> , 1994 , 46, 55-62	1.7	50
99	Germline competency of human embryonic stem cells depends on eomesodermin. <i>Biology of Reproduction</i> , 2017 , 97, 850-861	3.9	49
98	Altered primordial germ cell migration in the absence of transforming growth factor beta signaling via ALK5. <i>Developmental Biology</i> , 2005 , 284, 194-203	3.1	49
97	Initiation of epigenetic reprogramming of the X chromosome in somatic nuclei transplanted to a mouse oocyte. <i>EMBO Reports</i> , 2005 , 6, 748-54	6.5	48
96	Manipulation of the repertoire of digestive enzymes secreted into the gastrointestinal tract of transgenic mice. <i>Bio/technology</i> , 1993 , 11, 376-9		47
95	Germ cell specification and pluripotency in mammals: a perspective from early embryogenesis. <i>Reproductive Medicine and Biology</i> , 2014 , 13, 203-215	4.1	46
94	Dissecting ensemble networks in ES cell populations reveals micro-heterogeneity underlying pluripotency. <i>Molecular BioSystems</i> , 2012 , 8, 744-52		45
93	Heterogeneity in imprinted methylation patterns of pluripotent embryonic germ cells derived from pre-migratory mouse germ cells. <i>Developmental Biology</i> , 2008 , 313, 674-81	3.1	45
92	Activation of Lineage Regulators and Transposable Elements across all Pluripotent Spectrum. <i>Stem Cell Reports</i> , 2017 , 8, 1645-1658	8	43
91	Genomic imprinting: developmental significance and molecular mechanism. <i>Current Opinion in Genetics and Development</i> , 1991 , 1, 241-6	4.9	42

90	Metabolic regulation of pluripotency and germ cell fate through Eketoglutarate. <i>EMBO Journal</i> , 2019 , 38,	13	41
89	Epigenetic reprogramming of mouse germ cells toward totipotency. <i>Cold Spring Harbor Symposia on Quantitative Biology</i> , 2010 , 75, 211-8	3.9	40
88	Astroglial IFITM3 mediates neuronal impairments following neonatal immune challenge in mice. <i>Glia</i> , 2013 , 61, 679-93	9	39
87	Blimp1 expression predicts embryonic stem cell development in vitro. Current Biology, 2011, 21, 1759-6	55 6.3	39
86	Tracing the transitions from pluripotency to germ cell fate with CRISPR screening. <i>Nature Communications</i> , 2018 , 9, 4292	17.4	38
85	Experimental embryological analysis of genetic imprinting in mouse development. <i>Genesis</i> , 1994 , 15, 515-22		36
84	Imprinting by DNA methylation: from transgenes to endogenous gene sequences. <i>Development</i> (Cambridge), 1990 , 108, 99-106	6.6	35
83	Provision of the immunoglobulin heavy chain enhancer downstream of a test gene is sufficient to confer lymphoid-specific expression in transgenic mice. <i>European Journal of Immunology</i> , 1987 , 17, 465	-96.1	34
82	A critical role of PRDM14 in human primordial germ cell fate revealed by inducible degrons. <i>Nature Communications</i> , 2020 , 11, 1282	17.4	33
81	Contribution of epigenetic landscapes and transcription factors to X-chromosome reactivation in the inner cell mass. <i>Nature Communications</i> , 2017 , 8, 1297	17.4	33
80	Combinatorial control of cell fate and reprogramming in the mammalian germline. <i>Current Opinion in Genetics and Development</i> , 2012 , 22, 466-74	4.9	33
79	Genome-wide identification of targets and function of individual MicroRNAs in mouse embryonic stem cells. <i>PLoS Genetics</i> , 2010 , 6, e1001163	6	33
78	Xist expression and macroH2A1.2 localisation in mouse primordial and pluripotent embryonic germ cells. <i>Differentiation</i> , 2002 , 69, 216-25	3.5	33
77	Proximal visceral endoderm and extraembryonic ectoderm regulate the formation of primordial germ cell precursors. <i>BMC Developmental Biology</i> , 2007 , 7, 140	3.1	32
76	Derivation of hypermethylated pluripotent embryonic stem cells with high potency. <i>Cell Research</i> , 2018 , 28, 22-34	24.7	31
75	Targeted DamID reveals differential binding of mammalian pluripotency factors. <i>Development</i> (Cambridge), 2018 , 145,	6.6	30
74	Investigating transcriptional states at single-cell-resolution. <i>Current Opinion in Biotechnology</i> , 2013 , 24, 69-78	11.4	29
73	Appropriate expression of the mouse H19 gene utilises three or more distinct enhancer regions spread over more than 130 kb. <i>Mechanisms of Development</i> , 2000 , 91, 365-8	1.7	28

72	Esrrb Complementation Rescues Development of Nanog-Null Germ Cells. Cell Reports, 2018, 22, 332-33	9 10.6	27
71	mRNA-sequencing whole transcriptome analysis of a single cell on the SOLiD system. <i>Journal of Biomolecular Techniques</i> , 2009 , 20, 266-71	1.1	27
70	MicroRNAs are tightly associated with RNA-induced gene silencing complexes in vivo. <i>Biochemical and Biophysical Research Communications</i> , 2008 , 372, 24-9	3.4	25
69	SRSF3 maintains transcriptome integrity in oocytes by regulation of alternative splicing and transposable elements. <i>Cell Discovery</i> , 2018 , 4, 33	22.3	24
68	Primordial germ cell specification: a context-dependent cellular differentiation event [corrected]. <i>Philosophical Transactions of the Royal Society B: Biological Sciences</i> , 2014 , 369,	5.8	24
67	DNA methylation and genomic imprinting in mammals. <i>Exs</i> , 1993 , 64, 469-86		24
66	A human p57(KIP2) transgene is not activated by passage through the maternal mouse germline. <i>Human Molecular Genetics</i> , 1999 , 8, 2211-9	5.6	22
65	A PAX5-OCT4-PRDM1 developmental switch specifies human primordial germ cells. <i>Nature Cell Biology</i> , 2018 , 20, 655-665	23.4	21
64	The germ cell determinant Blimp1 is not required for derivation of pluripotent stem cells. <i>Cell Stem Cell</i> , 2012 , 11, 110-7	18	21
63	G9a regulates temporal preimplantation developmental program and lineage segregation in blastocyst. <i>ELife</i> , 2018 , 7,	8.9	21
62	Genetic basis for primordial germ cells specification in mouse and human: Conserved and divergent roles of PRDM and SOX transcription factors. <i>Current Topics in Developmental Biology</i> , 2019 , 135, 35-89	5.3	20
61	Membrane-bound steel factor maintains a high local concentration for mouse primordial germ cell motility, and defines the region of their migration. <i>PLoS ONE</i> , 2011 , 6, e25984	3.7	20
60	Reprogramming primordial germ cells (PGC) to embryonic germ (EG) cells. <i>Current Protocols in Stem Cell Biology</i> , 2008 , Chapter 1, Unit1A.3	2.8	20
59	Efficient Induction and Isolation of Human Primordial Germ Cell-Like Cells from Competent Human Pluripotent Stem Cells. <i>Methods in Molecular Biology</i> , 2017 , 1463, 217-226	1.4	19
58	Human Germline: A New Research Frontier. Stem Cell Reports, 2015, 4, 955-60	8	19
57	Mest but Not MiR-335 Affects Skeletal Muscle Growth and Regeneration. <i>PLoS ONE</i> , 2015 , 10, e013043	63.7	18
56	Germ cells: the eternal link between generations. <i>Comptes Rendus - Biologies</i> , 2007 , 330, 474-8	1.4	17
55	Polycomb-group proteins are involved in silencing processes caused by a transgenic element from the murine imprinted H19/Igf2 region in Drosophila. <i>Development Genes and Evolution</i> , 2003 , 213, 336-4	14 ^{.8}	17

54	Development. Programming the X chromosome. <i>Science</i> , 2004 , 303, 633-4	33.3	16
53	Stem cells: a sporadic super state. <i>Nature</i> , 2012 , 487, 43-5	50.4	15
52	Human embryo research, stem cell-derived embryo models and inlitro gametogenesis: Considerations leading to the revised ISSCR guidelines. <i>Stem Cell Reports</i> , 2021 , 16, 1416-1424	8	15
51	Developmental Competence for Primordial Germ Cell Fate. <i>Current Topics in Developmental Biology</i> , 2016 , 117, 471-96	5.3	15
50	Impressions of imprints. <i>Trends in Genetics</i> , 1994 , 10, 415-7	8.5	14
49	Nuclear reprogramming by human embryonic stem cells. <i>Cell</i> , 2005 , 122, 653-4	56.2	13
48	A sensitive multiplex assay for piRNA expression. <i>Biochemical and Biophysical Research Communications</i> , 2008 , 369, 1190-4	3.4	12
47	Mechanism of imprinting on mouse distal chromosome 7. <i>Genetical Research</i> , 1998 , 72, 237-45	1.1	11
46	The mechanisms of genomic imprinting. Results and Problems in Cell Differentiation, 1999, 25, 91-118	1.4	11
45	Breaking the germ line-soma barrier. <i>Nature Reviews Molecular Cell Biology</i> , 2016 , 17, 136	48.7	10
44	What Can Stem Cell Models Tell Us About Human Germ Cell Biology?. <i>Current Topics in Developmental Biology</i> , 2018 , 129, 25-65	5.3	10
43	Cellular reprogramming in pursuit of immortality. Cell Stem Cell, 2012, 11, 748-50	18	10
42	Specification and epigenomic resetting of the pig germline exhibit conservation with the human lineage. <i>Cell Reports</i> , 2021 , 34, 108735	10.6	10
41	The imprinted gene Peg3 is not essential for tumor necrosis factor alpha signaling. <i>Laboratory Investigation</i> , 2000 , 80, 1509-11	5.9	9
40	Testing the role of SOX15 in human primordial germ cell fate. Wellcome Open Research, 2019, 4, 122	4.8	9
39	Activin A and BMP4 Signaling Expands Potency of Mouse Embryonic Stem Cells in Serum-Free Media. <i>Stem Cell Reports</i> , 2020 , 14, 241-255	8	8
38	An intronic DNA sequence within the mouse Neuronatin gene exhibits biochemical characteristics		
	of an ICR and acts as a transcriptional activator in Drosophila. <i>Mechanisms of Development</i> , 2008 , 125, 963-73	1.7	8

36	Differentiation and gene regulation Programming, reprogramming and regeneration. <i>Current Opinion in Genetics and Development</i> , 2003 , 13, 445-447	4.9	6
35	Testing the role of SOX15 in human primordial germ cell fate. Wellcome Open Research, 2019, 4, 122	4.8	6
34	Dedifferentiation of foetal CNS stem cells to mesendoderm-like cells through an EMT process. <i>PLoS ONE</i> , 2012 , 7, e30759	3.7	5
33	DNMTs Play an Important Role in Maintaining the Pluripotency of Leukemia Inhibitory Factor-Dependent Embryonic Stem Cells. <i>Stem Cell Reports</i> , 2021 , 16, 582-596	8	5
32	Branch-recombinant Gaussian processes for analysis of perturbations in biological time series. <i>Bioinformatics</i> , 2018 , 34, i1005-i1013	7.2	5
31	Tracing the emergence of primordial germ cells from bilaminar disc rabbit embryos and pluripotent stem cells. <i>Cell Reports</i> , 2021 , 37, 109812	10.6	4
30	A critical but divergent role of PRDM14 in human primordial germ cell fate revealed by inducible degro	ns	4
29	Conserved features of non-primate bilaminar disc embryos and the germline. <i>Stem Cell Reports</i> , 2021 , 16, 1078-1092	8	4
28	Perceiving signals, building networks, reprogramming germ cell fate. <i>International Journal of Developmental Biology</i> , 2013 , 57, 123-32	1.9	3
27	Reversion of mouse postimplantation epiblast stem cells to a naWe pluripotent state by modulation of signalling pathways. <i>Methods in Molecular Biology</i> , 2013 , 1074, 15-29	1.4	3
26	Blastocyst complementation using Prdm14-deficient rats enables efficient germline transmission and generation of functional mouse spermatids in rats. <i>Nature Communications</i> , 2021 , 12, 1328	17.4	3
25	DNA (De)Methylation: The Passive Route to NaWety?. <i>Trends in Genetics</i> , 2016 , 32, 592-595	8.5	2
24	Differential Demethylation of Paternal and Maternal Genomes in the Preimplantation Mouse Embryo: Implications for Mammalian Development 2004 , 207-214		2
23	Bayesian inference of transcriptional branching identifies regulators of early germ cell development in humans		2
22	Human Germline Development from Pluripotent Stem Cellsin vitro. <i>Journal of Mammalian Ova Research</i> , 2016 , 33, 79-87		1
21	Detection of CpG methylation patterns by affinity capture methods197-209		1
20	Transposable elements resistant to epigenetic resetting in the human germline are epigenetic hotspots for development and disease		1
19	Specification and epigenetic resetting of the pig germline exhibit conservation with the human lineage		1

18	Tracing the Transitions from Pluripotency to Germ Cell Fate with CRISPR Screening	5	ſ
17	Lineage segregation, pluripotency and X-chromosome inactivation in the pig pre-gastrulation embryo	:	ſ
16	Imprinting and gene silencing in mice and Drosophila. <i>Novartis Foundation Symposium</i> , 1998 , 214, 233-44; discussion 244-50	<u>:</u>	Í
15	The unfolding body plan of primate embryos in culture. <i>Cell Research</i> , 2020 , 30, 103-104	24.7	
14	In retrospect: Thirty-five years of endless cell potential. <i>Nature</i> , 2016 , 535, 502-3	50.4	
13	Epigenetic Reprogramming of Somatic Nuclei via Cell Fusion 2014 , 11-19		
12	Genomic Reprogramming 2014 , 453-463		
11	Active DNA demethylation: the enigma starts in the zygote91-103		
10	Epigenetic stability of human pluripotent stem cells118-133		
9	MicroRNAs in embryonic stem cells163-178		
8	Genomic Reprogramming 2013 , 393-398		
7	Untangling the mysteries of maternal inheritance with polycomb. <i>EMBO Journal</i> , 2012 , 31, 2837-8	13	
6	Generation of single cell microRNA expression profile489-496		
5	Genomic Reprogramming 2004 , 657-662		
4	Genomic imprinting. Advances in Developmental Biology and Biochemistry, 2002, 12, 233-264		
3	Parental Imprinting in Mammalian Development 1993 , 144-156		
2	Genomic Reprogramming 2009 , 437-442		
1	Staged profiling of sperm development in sync. <i>Cell Research</i> , 2018 , 28, 965-966	24.7	