Baolu Shi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6529465/publications.pdf Version: 2024-02-01

RAOLU SH

#	Article	IF	CITATIONS
1	Oxy-fuel combustion of methane in a swirl tubular flame burner under various oxygen contents: Operation limits and combustion instability. Experimental Thermal and Fluid Science, 2018, 90, 115-124.	2.7	67
2	Mitigating NO emissions from an ammonia-fueled micro-power system with a perforated plate implemented. Journal of Hazardous Materials, 2021, 401, 123848.	12.4	63
3	Effects of heat recirculation on combustion characteristics of n-heptane in micro combustors. Applied Thermal Engineering, 2016, 109, 697-708.	6.0	59
4	Carbon dioxide diluted methane/oxygen combustion in a rapidly mixed tubular flame burner. Combustion and Flame, 2015, 162, 420-430.	5.2	57
5	Prediction of nano/micro aluminum particles ignition in oxygen atmosphere. Fuel, 2020, 266, 116952.	6.4	49
6	Effects of internal flue gas recirculation rate on the NO emission in a methane/air premixed flame. Combustion and Flame, 2018, 188, 199-211.	5.2	47
7	Flame stability and combustion characteristics of liquid fuel in a meso-scale burner with porous media. Fuel, 2019, 251, 249-259.	6.4	47
8	Effect of flat-wall impingement on diesel spray combustion. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2015, 229, 535-549.	1.9	46
9	lgnition and Oxidation of Core–Shell Al/Al ₂ O ₃ Nanoparticles in an Oxygen Atmosphere: Insights from Molecular Dynamics Simulation. Journal of Physical Chemistry C, 2018, 122, 29620-29627.	3.1	43
10	Effects of particle size on two-phase flow loss in aluminized solid rocket motors. Acta Astronautica, 2019, 159, 33-40.	3.2	38
11	Methane/oxygen combustion in a rapidly mixed type tubular flame burner. Proceedings of the Combustion Institute, 2013, 34, 3369-3377.	3.9	36
12	Flammability enhancement of swirling ammonia/air combustion using AC powered gliding arc discharges. Fuel, 2022, 313, 122674.	6.4	32
13	Reaction Mechanism of the Aluminum Nanoparticle: Physicochemical Reaction and Heat/Mass Transfer. Journal of Physical Chemistry C, 2020, 124, 3886-3894.	3.1	31
14	A numerical investigation on heterogeneous combustion of aluminum nanoparticle clouds. Aerospace Science and Technology, 2021, 112, 106604.	4.8	25
15	Flow visualization and mixing in a rapidly mixed type tubular flame burner. Experimental Thermal and Fluid Science, 2014, 54, 1-11.	2.7	24
16	Reexamination on methane/oxygen combustion in a rapidly mixed type tubular flame burner. Combustion and Flame, 2014, 161, 1310-1325.	5.2	23
17	CO2 diluted propane/oxygen combustion in a rapidly mixed tubular flame burner. Proceedings of the Combustion Institute, 2017, 36, 4261-4268.	3.9	22
18	Characteristics of combustion and soot formation of ethanol-gasoline blends injected by a hole-type nozzle for direct-injection spark-ignition engines. Fuel Processing Technology, 2018, 181, 318-330.	7.2	22

BAOLU SHI

#	Article	IF	CITATIONS
19	Coherence resonance and stochastic bifurcation behaviors of simplified standing-wave thermoacoustic systems. Journal of the Acoustical Society of America, 2019, 145, 692-702.	1.1	22
20	Effects of temperature-time history on the flame synthesis of nanoparticles in a swirl-stabilized tubular burner with two feeding modes. Journal of Aerosol Science, 2019, 133, 72-82.	3.8	21
21	Investigation on the microscale combustion characteristics of AP/HTPB propellant under wide pressure range. Fuel, 2021, 306, 121652.	6.4	21
22	Effects of N2 and CO2 dilution on the combustion characteristics of C3H8/O2 mixture in a swirl tubular flame burner. Experimental Thermal and Fluid Science, 2019, 100, 251-258.	2.7	19
23	Modeling of micro aluminum particle combustion in multiple oxidizers. Acta Astronautica, 2021, 189, 119-128.	3.2	16
24	Size-derived reaction mechanism of core-shell aluminum nanoparticle. Applied Physics Letters, 2020, 117, .	3.3	15
25	Experimental study on the collision behaviors of micron-sized aluminum droplets with solid wall in high temperature burned gas. Aerospace Science and Technology, 2021, 115, 106791.	4.8	15
26	Rapidly mixed combustion of hydrogen/oxygen diluted by N2 and CO2 in a tubular flame combustor. International Journal of Hydrogen Energy, 2018, 43, 14806-14815.	7.1	14
27	Characteristics of stoichiometric CH4/O2/CO2 flame up to the pure oxygen condition. Energy, 2019, 168, 151-159.	8.8	14
28	Characteristics of Diesel Spray Flame under Flat Wall Impinging Condition –LAS, OH* Chemiluminescence and Two Color Pyrometry Results. , 0, , .		13
29	A novel combustion system for liquid fuel evaporating and burning. Proceedings of the Combustion Institute, 2019, 37, 4329-4336.	3.9	13
30	Quantitative investigation on the spray mixture formation for ethanol-gasoline blends via UV–Vis dual-wavelength laser absorption scattering (LAS) technique. Fuel, 2019, 242, 425-437.	6.4	11
31	Response of lean premixed swirl tubular flame to acoustic perturbations. Experimental Thermal and Fluid Science, 2020, 119, 110199.	2.7	11
32	EFFECTS OF CROSS-FLOW ON FUEL SPRAY INJECTED BY HOLE-TYPE INJECTOR FOR DIRECTINJECTION GASOLINE ENGINE. Atomization and Sprays, 2015, 25, 81-98.	0.8	10
33	Effects of AP powder topology on microscale combustion properties of AP/HTPB propellant. Powder Technology, 2021, 394, 468-477.	4.2	10
34	Numerical study on the characteristics of a nano-aluminum dust-air jet flame. Aerospace Science and Technology, 2022, 121, 107304.	4.8	10
35	Temperature measurements and high-speed photography of micron-sized aluminum particles burning in methane flat-flame exhaust. Fuel, 2021, 306, 121743.	6.4	8
36	EFFECTS OF CROSS-FLOW ON FUEL SPRAY INJECTED BY HOLE-TYPE INJECTOR FOR DIRECT-INJECTION GASOLINE ENGINE. SECOND REPORT: SPRAY PATTERN, DROPLET SIZE, AND VORTEX STRUCTURE. Atomization and Sprays, 2016, 26, 53-72.	0.8	8

Baolu Shi

#	Article	IF	CITATIONS
37	Experimental and numerical study on slag deposition in solid rocket motor. Aerospace Science and Technology, 2022, 122, 107404.	4.8	7
38	Cross-Flow Effect on Behavior of Fuel Spray Injected by Hole-Type Nozzle for D.I. Gasoline Engine. , 0, , .		4
39	Effects of swirl on the heating process of a central gas stream in a tubular flame. Experimental Thermal and Fluid Science, 2020, 119, 110209.	2.7	4
40	Hydrogen abstraction/addition reactions in soot surface growth. Physical Chemistry Chemical Physics, 2021, 23, 3071-3086.	2.8	4
41	Improvement of ignition and combustion performance of micro-aluminum particles by double-shell nickel-phosphorus alloy coating. Chemical Engineering Journal, 2022, 433, 133585.	12.7	4
42	Quantitative measurement of mixture formation in an impinging spray of ethanol-gasoline blend under cold-start condition via UV–Vis dual-wavelength laser absorption scattering (LAS) technique. Fuel, 2020, 262, 116685.	6.4	3
43	A comparison of partially premixed methane/air combustion in confined vane-swirl and jet-swirl combustors. Combustion Science and Technology, 2023, 195, 212-231.	2.3	3
44	Effects of Damköhler Number on Methane/Oxygen Tubular Combustion Diluted by N2 and CO2. Journal of Energy Resources Technology, Transactions of the ASME, 2017, 139, .	2.3	2
45	Characteristics of oxy-methane flame in an axial/tangential swirl jet burner. Experimental Thermal and Fluid Science, 2022, 139, 110732.	2.7	2
46	An Experimental Study on Methane/Oxygen-Air Combustion With a Rapidly Mixed Type Tubular Flame Burner. , 2011, , .		1
47	A technique to establish liquid ethanol tubular combustion by dual swirl. Fuel, 2022, 316, 123443.	6.4	1
48	Ethanol spray tubular flame established in a swirling air flow. Experimental Thermal and Fluid Science, 2022, 134, 110616.	2.7	1
49	Experimental and Numerical Study on Oxygen Enhanced Methane Combustion in a Rapidly Mixed Tubular Flame Burner. , 2015, , .		0
50	Characteristics of Hydrogen Combustion in a Rapidly Mixed Tubular Flame Burner. , 2018, , .		0
51	Stability limits of methane/oxygen mixtures diluted by N ₂ and CO ₂ under various oxygen contents. , 2018, , .		0
52	Numerical study on combustion characteristic of micron aluminum particle. , 2021, , .		0