Jong-Yea Kim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6529382/publications.pdf Version: 2024-02-01

IONG-YEA KIM

#	Article	IF	CITATIONS
1	Characterization of nanoparticles prepared by acid hydrolysis of various starches. Starch/Staerke, 2012, 64, 367-373.	1.1	175
2	Preparation of nano-sized starch particles by complex formation with n-butanol. Carbohydrate Polymers, 2009, 76, 110-116.	5.1	115
3	Preparation of crystalline starch nanoparticles using cold acid hydrolysis and ultrasonication. Carbohydrate Polymers, 2013, 98, 295-301.	5.1	114
4	Fragmentation of Waxy Rice Starch Granules by Enzymatic Hydrolysis. Cereal Chemistry, 2008, 85, 182-187.	1.1	92
5	Improvement of water solubility and humidity stability of tapioca starch film by incorporating various gums. LWT - Food Science and Technology, 2015, 64, 475-482.	2.5	78
6	Preparation and characterization of crystalline complexes between amylose and C18 fatty acids. LWT - Food Science and Technology, 2015, 64, 889-897.	2.5	66
7	Humidity stability of tapioca starch–pullulan composite films. Food Hydrocolloids, 2014, 41, 140-145.	5.6	53
8	Effect of dual modification of HMT and crosslinking on physicochemical properties and digestibility of waxy maize starch. Food Hydrocolloids, 2018, 75, 33-40.	5.6	51
9	Preparation and characterization of corn starch-β-carotene composites. Carbohydrate Polymers, 2016, 136, 394-401.	5.1	48
10	Pasting Properties of Potato Starch and Waxy Maize Starch Mixtures. Starch/Staerke, 2009, 61, 352-357.	1.1	46
11	Effect of minor addition of xanthan on cross-linking of rice starches by dry heating with phosphate salts. Journal of Applied Polymer Science, 2007, 105, 2280-2286.	1.3	44
12	Preparation of aqueous dispersion of \hat{l}^2 -carotene nano-composites through complex formation with starch dextrin. Food Hydrocolloids, 2013, 33, 256-263.	5.6	43
13	Heat–moisture treatment under mildly acidic conditions alters potato starch physicochemical properties and digestibility. Carbohydrate Polymers, 2013, 98, 1245-1255.	5.1	41
14	Volatile composition and sensory characteristics of onion powders prepared by convective drying. Food Chemistry, 2017, 231, 386-392.	4.2	40
15	Starch nanoparticles produced via acidic dry heat treatment as a stabilizer for a Pickering emulsion: Influence of the physical properties of particles. Carbohydrate Polymers, 2020, 239, 116241.	5.1	40
16	Application of starch nanoparticles as a stabilizer for Pickering emulsions: Effect of environmental factors and approach for enhancing its storage stability. Food Hydrocolloids, 2021, 120, 106984.	5.6	31
17	Formation and isolation of nanocrystal complexes between dextrins and n-butanol. Carbohydrate Polymers, 2009, 78, 626-632.	5.1	30
18	Effect of heat-moisture treatment under mildly acidic condition on fragmentation of waxy maize starch granules into nanoparticles. Food Hydrocolloids, 2017, 63, 59-66.	5.6	30

Jong-Yea Kim

#	Article	IF	CITATIONS
19	Fabrication of citric acid-modified starch nanoparticles to improve their thermal stability and hydrophobicity. Carbohydrate Polymers, 2021, 253, 117242.	5.1	29
20	Ulmus macrocarpa Hance Extracts Attenuated H2O2 and UVB-Induced Skin Photo-Aging by Activating Antioxidant Enzymes and Inhibiting MAPK Pathways. International Journal of Molecular Sciences, 2017, 18, 1200.	1.8	28
21	Application of starch nanoparticles as host materials for encapsulation of curcumin: Effect of citric acid modification. International Journal of Biological Macromolecules, 2021, 183, 1-11.	3.6	25
22	Production of starch nanoparticles using normal maize starch via heat-moisture treatment under mildly acidic conditions and homogenization. Carbohydrate Polymers, 2016, 151, 274-282.	5.1	21
23	Corn starch granules with enhanced load-carrying capacity via citric acid treatment. Carbohydrate Polymers, 2013, 91, 39-47.	5.1	20
24	Controlled fragmentation of starch into nanoparticles using a dry heating treatment under mildly acidic conditions. International Journal of Biological Macromolecules, 2019, 123, 810-816.	3.6	20
25	Preparation of aqueous dispersions of coenzyme Q10 nanoparticles with amylomaize starch and its dextrin. LWT - Food Science and Technology, 2012, 47, 493-499.	2.5	19
26	In vitro analyses of resistant starch in retrograded waxy and normal corn starches. International Journal of Biological Macromolecules, 2013, 55, 113-117.	3.6	19
27	Influence of extraction conditions on antioxidant activities and catechin content from bark of Ulmus pumila L Applied Biological Chemistry, 2016, 59, 329-336.	0.7	16
28	Complex formation between amylomaize dextrin and n-butanol by phase separation system. Carbohydrate Polymers, 2010, 82, 264-269.	5.1	10
29	Starch nanoparticles resulting from combination of dry heating under mildly acidic conditions and homogenization. Carbohydrate Polymers, 2017, 168, 70-78.	5.1	10
30	Relationship between pasting parameters and length of paste drop of various starches. LWT - Food Science and Technology, 2017, 79, 655-658.	2.5	10
31	Effect of thermal shock cycling on storage stability and quality of fresh-cut potato. LWT - Food Science and Technology, 2020, 121, 108972.	2.5	10
32	Formation mechanism of nanocomposites between starch and stearic acid via nanoprecipitation. Food Hydrocolloids, 2022, 131, 107780.	5.6	10
33	Preparation and characterization of aqueous dispersions of dextrin and policosanol composites. Carbohydrate Polymers, 2015, 121, 140-146.	5.1	9
34	Structural and physicochemical properties of composites between starch nanoparticles and β-carotene prepared via nanoprecipitation. International Journal of Biological Macromolecules, 2022, 214, 100-110.	3.6	9
35	<i>Added</i> versus <i>Accumulated</i> Sugars on Color Development and Acrylamide Formation in French-Fried Potato Strips. Journal of Agricultural and Food Chemistry, 2012, 60, 8763-8771.	2.4	8
36	Enhancing dispersion stability of alpha-tocopherol in aqueous media using maize starch and ultrasonication. LWT - Food Science and Technology, 2016, 68, 589-594.	2.5	8

Jong-Yea Kim

#	Article	IF	CITATIONS
37	Effects of dextrinization and octenylsuccinylation of high amylose starch on complex formation with ω-3 fatty acids (EPA/DHA). Food Hydrocolloids, 2018, 77, 357-362.	5.6	8
38	Change in textural properties, starch digestibility, and aroma of nonfried instant noodles by substitution of konjac glucomannan. Cereal Chemistry, 2019, 96, 784-791.	1.1	8
39	Effects of the chemical and physical reaction conditions on the formation of nanocomposites made of starch and stearic acid. Carbohydrate Polymers, 2020, 236, 116066.	5.1	6
40	Radical scavenging-linked anti-adipogenic activity of Alnus firma extracts. International Journal of Molecular Medicine, 2017, 41, 119-128.	1.8	2
41	Minimization of Isoamylase Interference in Sizeâ€Exclusion Chromatography of Debranched Starch Molecular Structure. Starch/Staerke, 2022, 74, 2100147.	1.1	2