Zhisen Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6529293/publications.pdf

Version: 2024-02-01

		394421	315739
59	1,620 citations	19	38
papers	citations	h-index	g-index
F.O.	50	50	1005
59	59	59	1885
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Oriented Crystallization of Hydroxyapatite in Self-Assembled Peptide Fibrils as a Bonelike Material. ACS Biomaterials Science and Engineering, 2023, 9, 1808-1814.	5.2	4
2	Grain boundary and misorientation angle-dependent thermal transport in single-layer MoS ₂ . Nanoscale, 2022, 14, 1241-1249.	5.6	11
3	Structural and mechanical stability of clathrate hydrates encapsulating monoatomic guest species. Journal of Molecular Liquids, 2022, 347, 118391.	4.9	14
4	Role of mechanical deformation in the thermal transport of sl-type methane hydrate. Physical Chemistry Chemical Physics, 2022, 24, 5479-5488.	2.8	4
5	Efficient mechanical modulation of the phonon thermal conductivity of Mo ₆ S ₆ nanowires. Nanoscale, 2022, 14, 3078-3086.	5.6	15
6	HTR: An ultra-high speed algorithm for cage recognition of clathrate hydrates. Nanotechnology Reviews, 2022, 11, 699-711.	5.8	14
7	Thermally induced hex-graphene transitions in 2D carbon crystals. Nanotechnology Reviews, 2022, 11, 1101-1114.	5.8	8
8	Simultaneous stiffening and strengthening of nanodiamond by fivefold twins. MRS Bulletin, 2022, 47, 219-230.	3.5	5
9	Machine learning assisted insights into the mechanical strength of nanocrystalline graphene oxide. 2D Materials, 2022, 9, 035002.	4.4	9
10	Graphene-based woven filter membrane with excellent strength and efficiency for water desalination. Desalination, 2022, 533, 115775.	8.2	13
11	Mechanical stability of fluorinated-methane clathrate hydrates. Journal of Molecular Liquids, 2022, 360, 119553.	4.9	9
12	Oxygen functionalization-induced crossover in the tensile properties of the thinnest 2D Ti2C MXene. Journal of Materials Chemistry C, 2021, 9, 2416-2425.	5.5	11
13	Mechanical ductile detwinning in CH ₃ NH ₃ PbI ₃ perovskite. Physical Chemistry Chemical Physics, 2021, 23, 21863-21873.	2.8	O
14	Classical nucleation theory of ice nucleation: Second-order corrections to thermodynamic parameters. Journal of Chemical Physics, 2021, 154, 234503.	3.0	9
15	Spontaneous Adsorption of Graphene Oxide on Multiple Polymeric Surfaces. Langmuir, 2021, 37, 8829-8839.	3.5	3
16	How Does the Step on Graphite Surface Impact Ice Nucleation?. Crystal Growth and Design, 2021, 21, 4354-4361.	3.0	4
17	Effect of interfacial dipole on heterogeneous ice nucleation. Journal of Physics Condensed Matter, 2021, 33, 375001.	1.8	3
18	Carbon clathrates as strong lightweight structures. International Journal of Mechanical Sciences, 2021, 202-203, 106509.	6.7	6

#	Article	IF	CITATIONS
19	Effect of Graphene on Ice Polymorph. Crystals, 2021, 11, 1134.	2.2	3
20	Direct proof of soft knock-on mechanism of ion permeation in a voltage gated sodium channel. International Journal of Biological Macromolecules, 2021, 188, 369-374.	7.5	1
21	Role of nanotube chirality on the mechanical characteristics of pillared graphene. Mechanics of Materials, 2021, 162, 104035.	3.2	16
22	Release of an Encapsulated Peptide from Carbon Nanotubes Driven by Electric Fields: A Molecular Dynamics Study. ACS Omega, 2021, 6, 27485-27490.	3.5	4
23	Strengthening and Weakening by Dislocations in Monolayer MoS ₂ . Chemistry of Materials, 2021, 33, 8758-8767.	6.7	19
24	Bioinspired Compartmentalization Strategy for Coating Polymers with Self-Organized Prismatic Films. Chemistry of Materials, 2021, 33, 9240-9251.	6.7	7
25	Mechanical Properties of CH ₄ –CO ₂ Heteroclathrate Hydrates. Energy &	5.1	18
26	Controlling Metal–Organic Framework/ZnO Heterostructure Kinetics through Selective Ligand Binding to ZnO Surface Steps. Chemistry of Materials, 2020, 32, 6666-6675.	6.7	16
27	Shape-preserving amorphous-to-crystalline transformation of CaCO ₃ revealed by in situ TEM. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 3397-3404.	7.1	97
28	Repair of tooth enamel by a biomimetic mineralization frontier ensuring epitaxial growth. Science Advances, 2019, 5, eaaw9569.	10.3	168
29	Crosslinking ionic oligomers as conformable precursors to calcium carbonate. Nature, 2019, 574, 394-398.	27.8	166
30	Topology and polarity of dislocation cores dictate the mechanical strength of monolayer MoS2. Applied Materials Today, 2019, 15, 34-42.	4.3	24
31	Grain-Size-Controlled Mechanical Properties of Polycrystalline Monolayer MoS ₂ . Nano Letters, 2018, 18, 1543-1552.	9.1	82
32	Nanotube-chirality-controlled tensile characteristics in coiled carbon metastructures. Carbon, 2018, 133, 335-349.	10.3	37
33	Mechanical properties of bi- and poly-crystalline ice. AIP Advances, 2018, 8, .	1.3	14
34	Role of Guest Molecules in the Mechanical Properties of Clathrate Hydrates. Crystal Growth and Design, 2018, 18, 6729-6741.	3.0	28
35	Mechanical Properties of Methane Hydrate: Intrinsic Differences from Ice. Journal of Physical Chemistry C, 2018, 122, 29081-29093.	3.1	31
36	Mechanical strength in hierarchically polycrystalline graphene with dislocation arrays-embedded grains. Materials Research Express, 2018, 5, 115019.	1.6	6

#	Article	IF	Citations
37	Correlations of crystal shape and lateral orientation in bioinspired CaCO ₃ mineralization. CrystEngComm, 2018, 20, 5241-5248.	2.6	5
38	Nature-inspired entwined coiled carbon mechanical metamaterials: molecular dynamics simulations. Nanoscale, 2018, 10, 15641-15653.	5.6	37
39	Control of ice nucleation: freezing and antifreeze strategies. Chemical Society Reviews, 2018, 47, 7116-7139.	38.1	215
40	Anomalous thermal stability in supergiant onion-like carbon fullerenes. Carbon, 2018, 138, 243-256.	10.3	18
41	DNA sequencing by two-dimensional materials: As theoretical modeling meets experiments. Biosensors and Bioelectronics, 2017, 89, 280-292.	10.1	35
42	Mesoâ€Functionalization of Silk Fibroin by Upconversion Fluorescence and Near Infrared In Vivo Biosensing. Advanced Functional Materials, 2017, 27, 1700628.	14.9	48
43	Fabrication of Crack-Free Photonic Crystal Films on Superhydrophobic Nanopin Surface. ACS Applied Materials & Description of Crack-Free Photonic Crystal Films on Superhydrophobic Nanopin Surface. ACS Applied Materials & Description of Crack-Free Photonic Crystal Films on Superhydrophobic Nanopin Surface. ACS Applied Materials & Description of Crack-Free Photonic Crystal Films on Superhydrophobic Nanopin Surface. ACS Applied Materials & Description of Crack-Free Photonic Crystal Films on Superhydrophobic Nanopin Surface. ACS Applied Materials & Description of Crack-Free Photonic Crystal Films on Superhydrophobic Nanopin Surface. ACS Applied Materials & Description of Crack-Free Photonic Crystal Films on Superhydrophobic Nanopin Surface. ACS Applied Materials & Description of Crack-Free Photonic Crystal Films on Superhydrophobic Nanopin Surface. ACS Applied Materials & Description of Crystal Films on Superhydrophobic Nanopin Surface. ACS Applied Materials & Description of Crystal Films on Superhydrophobic Nanopin Surface. ACS Applied Materials & Description of Crystal Films on Superhydrophobic Nanopin Surface. ACS Applied Materials & Description of Crystal Films on Superhydrophobic Nanopin Surface. ACS Applied Materials & Description of Crystal Films on Superhydrophobic Nanopin Surface. ACS Applied Materials & Description of Crystal Films on Superhydrophobic Nanopin Surface. ACS Applied Materials & Description of Crystal Films on Superhydrophobic Nanopin Surface. ACS Applied Materials & Description of Crystal Films on Superhydrophobic Nanopin Surface. ACS Applied Materials & Description of Crystal Films on Superhydrophobic Nanopin Surface. ACS Applied Materials & Description of Crystal Films on Superhydrophobic Nanopin Surface. ACS Applied Materials & Description of Crystal Films on Superhydrophobic Nanopin Superhydr	8.0	29
44	Design of Heterogeneous Nuclei Composed of Uniaxial Cellulose Nanocrystal Assemblies for Epitaxial Growth of Poly(\hat{l}_{μ} -caprolactone). Macromolecules, 2017, 50, 3355-3364.	4.8	10
45	Carbon nanotubes kirigami mechanical metamaterials. Physical Chemistry Chemical Physics, 2017, 19, 11032-11042.	2.8	15
46	Computer simulation of water desalination through boron nitride nanotubes. Physical Chemistry Chemical Physics, 2017, 19, 30031-30038.	2.8	28
47	Pressing Carbon Nanotubes Triggers Better Ion Selectivity. Journal of Physical Chemistry C, 2017, 121, 19512-19518.	3.1	3
48	Morphology- and dehydrogenation-controlled mechanical properties in diamond nanothreads. Carbon, 2017, 124, 9-22.	10.3	22
49	Morphology-Controlled Tensile Mechanical Characteristics in Graphene Allotropes. ACS Omega, 2017, 2, 3977-3988.	3.5	26
50	Enhancing the specificity of polymerase chain reaction by graphene oxide through surface modification: zwitterionic polymer is superior to other polymers with different charges. International Journal of Nanomedicine, 2016, Volume 11, 5989-6002.	6.7	21
51	Theoretic Study on Dispersion Mechanism of Boron Nitride Nanotubes by Polynucleotides. Scientific Reports, 2016, 6, 39747.	3.3	10
52	Design of Heterogeneous Nuclei for Lateral Crystallization via Uniaxial Assembly of Cellulose Nanocrystals. Crystal Growth and Design, 2016, 16, 4620-4626.	3.0	9
53	Steered molecular dynamics study of inhibitor binding in the internal binding site in dehaloperoxidase-hemoglobin. Biophysical Chemistry, 2016, 211, 28-38.	2.8	20
54	Charge-tunable insertion process of carbon nanotubes into DNA nanotubes. Journal of Molecular Graphics and Modelling, 2016, 66, 20-25.	2.4	12

ZHISEN ZHANG

#	Article	IF	CITATION
55	On the loading mechanism of ssDNA into carbon nanotubes. RSC Advances, 2015, 5, 56896-56903.	3.6	15
56	Theoretical studies on the dynamics of DNA fragment translocation through multilayer graphene nanopores. RSC Advances, 2014, 4, 50494-50502.	3.6	17
57	Effects of Graphene Nanopore Geometry on DNA Sequencing. Journal of Physical Chemistry Letters, 2014, 5, 1602-1607.	4.6	54
58	Na $<$ sup $>+sup> and K<sup>+sup> ion selectivity by size-controlled biomimetic graphene nanopores. Nanoscale, 2014, 6, 10666-10672.$	5.6	89
59	Fracture mechanics of methane clathrate hydrates. Acta Mechanica Sinica/Lixue Xuebao, 0, , 1.	3.4	3