
Giulio Caracciolo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6528517/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Opsonin-Deficient Nucleoproteic Corona Endows UnPEGylated Liposomes with Stealth Properties <i>In Vivo</i> . ACS Nano, 2022, 16, 2088-2100.	14.6	28
2	Impact on NK cell functions of acute versus chronic exposure to extracellular vesicleâ€associated MICA: Dual role in cancer immunosurveillance. Journal of Extracellular Vesicles, 2022, 11, e12176.	12.2	22
3	Principles for optimization and validation of mRNA lipid nanoparticle vaccines against COVID-19 using 3D bioprinting. Nano Today, 2022, 43, 101403.	11.9	26
4	Magnetic Levitation of Personalized Nanoparticle–Protein Corona as an Effective Tool for Cancer Detection. Nanomaterials, 2022, 12, 1397.	4.1	8
5	Fluorescence lifetime microscopy unveils the supramolecular organization of liposomal Doxorubicin. Nanoscale, 2022, 14, 8901-8905.	5.6	11
6	<i>In vitro</i> and <i>ex vivo</i> nano-enabled immunomodulation by the protein corona. Nanoscale, 2022, 14, 10531-10539.	5.6	3
7	Magnetic Levitation Patterns of Microfluidic-Generated Nanoparticle–Protein Complexes. Nanomaterials, 2022, 12, 2376.	4.1	7
8	Efficient pancreatic cancer detection through personalized protein corona of gold nanoparticles. Biointerphases, 2021, 16, 011010.	1.6	10
9	Protein corona profile of graphene oxide allows detection of glioblastoma multiforme using a simple one-dimensional gel electrophoresis technique: a proof-of-concept study. Biomaterials Science, 2021, 9, 4671-4678.	5.4	11
10	Optimal centrifugal isolating of liposome–protein complexes from human plasma. Nanoscale Advances, 2021, 3, 3824-3834.	4.6	12
11	Inhibiting the Growth of 3D Brain Cancer Models with Bio-Coronated Liposomal Temozolomide. Pharmaceutics, 2021, 13, 378.	4.5	12
12	Nanotechnology and pancreatic cancer management: State of the art and further perspectives. World Journal of Gastrointestinal Oncology, 2021, 13, 231-237.	2.0	22
13	The Possible Role of Sex As an Important Factor in Development and Administration of Lipid Nanomedicine-Based COVID-19 Vaccine. Molecular Pharmaceutics, 2021, 18, 2448-2453.	4.6	11
14	A Proteomic Study on the Personalized Protein Corona of Liposomes. Relevance for Early Diagnosis of Pancreatic DUCTAL Adenocarcinoma and Biomarker Detection. Journal of Nanotheranostics, 2021, 2, 82-93.	3.1	10
15	Artificial Protein Coronas Enable Controlled Interaction with Corneal Epithelial Cells: New Opportunities for Ocular Drug Delivery. Pharmaceutics, 2021, 13, 867.	4.5	8
16	The role of sex as a biological variable in the efficacy and toxicity of therapeutic nanomedicine. Advanced Drug Delivery Reviews, 2021, 174, 337-347.	13.7	21
17	Microfluidic Formulation of DNA-Loaded Multicomponent Lipid Nanoparticles for Gene Delivery. Pharmaceutics, 2021, 13, 1292.	4.5	25
18	Probing the role of nuclear-envelope invaginations in the nuclear-entry route of lipofected DNA by multi-channel 3D confocal microscopy. Colloids and Surfaces B: Biointerfaces, 2021, 205, 111881.	5.0	5

#	Article	IF	CITATIONS
19	Synergistic Analysis of Protein Corona and Haemoglobin Levels Detects Pancreatic Cancer. Cancers, 2021, 13, 93.	3.7	21
20	Detection of Pancreatic Ductal Adenocarcinoma by Ex Vivo Magnetic Levitation of Plasma Protein-Coated Nanoparticles. Cancers, 2021, 13, 5155.	3.7	11
21	A comprehensive analysis of liposomal biomolecular corona upon human plasma incubation: The evolution towards the lipid corona. Talanta, 2020, 209, 120487.	5.5	20
22	Immune complexes exposed on mast cellâ€derived nanovesicles amplify allergic inflammation. Allergy: European Journal of Allergy and Clinical Immunology, 2020, 75, 1260-1263.	5.7	18
23	A mechanistic explanation of the inhibitory role of the protein corona on liposomal gene expression. Biochimica Et Biophysica Acta - Biomembranes, 2020, 1862, 183159.	2.6	10
24	Nanoparticle-enabled blood tests for early detection of pancreatic ductal adenocarcinoma. Cancer Letters, 2020, 470, 191-196.	7.2	30
25	A protein corona sensor array detects breast and prostate cancers. Nanoscale, 2020, 12, 16697-16704.	5.6	17
26	Biomolecular Corona Affects Controlled Release of Drug Payloads from Nanocarriers. Trends in Pharmacological Sciences, 2020, 41, 641-652.	8.7	38
27	Protein corona-enabled serological tests for early stage cancer detection. Sensors International, 2020, 1, 100025.	8.4	14
28	Mechanistic Insights into the Release of Doxorubicin from Graphene Oxide in Cancer Cells. Nanomaterials, 2020, 10, 1482.	4.1	20
29	Personalized Graphene Oxide-Protein Corona in the Human Plasma of Pancreatic Cancer Patients. Frontiers in Bioengineering and Biotechnology, 2020, 8, 491.	4.1	45
30	Bone Marrow Stromal Cell-Derived IL-8 Upregulates PVR Expression on Multiple Myeloma Cells via NF-kB Transcription Factor. Cancers, 2020, 12, 440.	3.7	21
31	Mapping the heterogeneity of protein corona by <i>ex vivo</i> magnetic levitation. Nanoscale, 2020, 12, 2374-2383.	5.6	31
32	Effect of Protein Corona on The Transfection Efficiency of Lipid-Coated Graphene Oxide-Based Cell Transfection Reagents. Pharmaceutics, 2020, 12, 113.	4.5	15
33	Impact of the protein corona on nanomaterial immune response and targeting ability. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2020, 12, e1615.	6.1	44
34	Interplay of protein corona and immune cells controls blood residency of liposomes. Nature Communications, 2019, 10, 3686.	12.8	160
35	Caveolin-1 Endows Order in Cholesterol-Rich Detergent Resistant Membranes. Biomolecules, 2019, 9, 287.	4.0	12
36	Effect of molecular crowding on the biological identity of liposomes: an overlooked factor at the bio-nano interface. Nanoscale Advances, 2019, 1, 2518-2522.	4.6	17

#	Article	IF	CITATIONS
37	Converting the personalized biomolecular corona of graphene oxide nanoflakes into a high-throughput diagnostic test for early cancer detection. Nanoscale, 2019, 11, 15339-15346.	5.6	42
38	Challenges in molecular diagnostic research in cancer nanotechnology. Nano Today, 2019, 27, 6-10.	11.9	45
39	Very low intensity ultrasounds as a new strategy to improve selective delivery of nanoparticles-complexes in cancer cells. Journal of Experimental and Clinical Cancer Research, 2019, 38, 1.	8.6	200
40	Nanoscale Technologies for Prevention and Treatment of Heart Failure: Challenges and Opportunities. Chemical Reviews, 2019, 119, 11352-11390.	47.7	46
41	Microfluidic manufacturing of surface-functionalized graphene oxide nanoflakes for gene delivery. Nanoscale, 2019, 11, 2733-2741.	5.6	67
42	Protein Corona Fingerprints of Liposomes: New Opportunities for Targeted Drug Delivery and Early Detection in Pancreatic Cancer. Pharmaceutics, 2019, 11, 31.	4.5	39
43	Disease-specific protein corona sensor arrays may have disease detection capacity. Nanoscale Horizons, 2019, 4, 1063-1076.	8.0	68
44	The biomolecular corona of gold nanoparticles in a controlled microfluidic environment. Lab on A Chip, 2019, 19, 2557-2567.	6.0	40
45	Microfluidic-generated lipid-graphene oxide nanoparticles for gene delivery. Applied Physics Letters, 2019, 114, 233701.	3.3	21
46	Exploitation of nanoparticle-protein interactions for early disease detection. Applied Physics Letters, 2019, 114, 163702.	3.3	25
47	Insulin secretory granules labelled with phogrin-fluorescent proteins show alterations in size, mobility and responsiveness to glucose stimulation in living l²-cells. Scientific Reports, 2019, 9, 2890.	3.3	24
48	Effect of Glucose on Liposome–Plasma Protein Interactions: Relevance for the Physiological Response of Clinically Approved Liposomal Formulations. Advanced Biology, 2019, 3, e1800221.	3.0	11
49	Nanoparticleâ€biomolecular corona: A new approach for the early detection of nonâ€smallâ€cell lung cancer. Journal of Cellular Physiology, 2019, 234, 9378-9386.	4.1	22
50	Clinically approved liposomal nanomedicines: lessons learned from the biomolecular corona. Nanoscale, 2018, 10, 4167-4172.	5.6	77
51	Principal component analysis of personalized biomolecular corona data for early disease detection. Nano Today, 2018, 21, 14-17.	11.9	42
52	Disease-related metabolites affect protein–nanoparticle interactions. Nanoscale, 2018, 10, 7108-7115.	5.6	61
53	Cationic lipid/DNA complexes manufactured by microfluidics and bulk self-assembly exhibit different transfection behavior. Biochemical and Biophysical Research Communications, 2018, 503, 508-512.	2.1	11
54	Brain Targeting by Liposome–Biomolecular Corona Boosts Anticancer Efficacy of Temozolomide in Glioblastoma Cells. ACS Chemical Neuroscience, 2018, 9, 3166-3174.	3.5	53

#	Article	IF	CITATIONS
55	Human Biomolecular Corona of Liposomal Doxorubicin: The Overlooked Factor in Anticancer Drug Delivery. ACS Applied Materials & Interfaces, 2018, 10, 22951-22962.	8.0	51
56	Improving the accuracy of pancreatic cancer clinical staging by exploitation of nanoparticle-blood interactions: A pilot study. Pancreatology, 2018, 18, 661-665.	1.1	18
57	Time-lapse confocal imaging datasets to assess structural and dynamic properties of subcellular nanostructures. Scientific Data, 2018, 5, 180191.	5.3	16
58	In vivo protein corona patterns of lipid nanoparticles. RSC Advances, 2017, 7, 1137-1145.	3.6	59
59	Genotoxic stress modulates the release of exosomes from multiple myeloma cells capable of activating NK cell cytokine production: Role of HSP70/TLR2/NF-kB axis. OncoImmunology, 2017, 6, e1279372.	4.6	100
60	Influence of dynamic flow environment on nanoparticle-protein corona: From protein patterns to uptake in cancer cells. Colloids and Surfaces B: Biointerfaces, 2017, 153, 263-271.	5.0	86
61	Impact of the biomolecular corona on the structure of PEGylated liposomes. Biomaterials Science, 2017, 5, 1884-1888.	5.4	24
62	Clinically approved PEGylated nanoparticles are covered by a protein corona that boosts the uptake by cancer cells. Nanoscale, 2017, 9, 10327-10334.	5.6	74
63	Intracellular Dynamics of Nanoparticles Probed by an Image-Derived Mean Square Displacement Approach. Biophysical Journal, 2017, 112, 296a-297a.	0.5	0
64	An apolipoprotein-enriched biomolecular corona switches the cellular uptake mechanism and trafficking pathway of lipid nanoparticles. Nanoscale, 2017, 9, 17254-17262.	5.6	73
65	Manipulation of lipoplex concentration at the cell surface boosts transfection efficiency in hard-to-transfect cells. Nanomedicine: Nanotechnology, Biology, and Medicine, 2017, 13, 681-691.	3.3	25
66	A protein corona-enabled blood test for early cancer detection. Nanoscale, 2017, 9, 349-354.	5.6	77
67	Biological Identity of Nanoparticles In Vivo : Clinical Implications of the Protein Corona. Trends in Biotechnology, 2017, 35, 257-264.	9.3	313
68	Dynamic fingerprinting of sub-cellular nanostructures by image mean square displacement analysis. Scientific Reports, 2017, 7, 14836.	3.3	18
69	Tumor-Derived Microvesicles Modulate Antigen Cross-Processing via Reactive Oxygen Species-Mediated Alkalinization of Phagosomal Compartment in Dendritic Cells. Frontiers in Immunology, 2017, 8, 1179.	4.8	21
70	The intracellular trafficking mechanism of Lipofectamine-based transfection reagents and its implication for gene delivery. Scientific Reports, 2016, 6, 25879.	3.3	158
71	Exploitation of nanoparticle–protein corona for emerging therapeutic and diagnostic applications. Journal of Materials Chemistry B, 2016, 4, 4376-4381.	5.8	32
72	Development of an image Mean Square Displacement (iMSD)-based method as a novel approach to study the intracellular trafficking of nanoparticles. Acta Biomaterialia, 2016, 42, 189-198.	8.3	14

#	Article	IF	CITATIONS
73	Nanoparticles-cell association predicted by protein corona fingerprints. Nanoscale, 2016, 8, 12755-12763.	5.6	75
74	Single-cell real-time imaging of transgene expression upon lipofection. Biochemical and Biophysical Research Communications, 2016, 474, 8-14.	2.1	10
75	Exploring Cellular Interactions of Liposomes Using Protein Corona Fingerprints and Physicochemical Properties. ACS Nano, 2016, 10, 3723-3737.	14.6	130
76	What the cell surface does not see: The gene vector under the protein corona. Colloids and Surfaces B: Biointerfaces, 2016, 141, 170-178.	5.0	11
77	The role of helper lipids in the intracellular disposition and transfection efficiency of niosome formulations for gene delivery to retinal pigment epithelial cells. International Journal of Pharmaceutics, 2016, 503, 115-126.	5.2	34
78	The protein corona of circulating PEGylated liposomes. Biochimica Et Biophysica Acta - Biomembranes, 2016, 1858, 189-196.	2.6	178
79	Personalized liposome–protein corona in the blood of breast, gastric and pancreatic cancer patients. International Journal of Biochemistry and Cell Biology, 2016, 75, 180-187.	2.8	112
80	Plasmonics Meets Biology through Optics. Nanomaterials, 2015, 5, 1022-1033.	4.1	1
81	Liposome–protein corona in a physiological environment: Challenges and opportunities for targeted delivery of nanomedicines. Nanomedicine: Nanotechnology, Biology, and Medicine, 2015, 11, 543-557.	3.3	196
82	Surface chemistry and serum type both determine the nanoparticle–protein corona. Journal of Proteomics, 2015, 119, 209-217.	2.4	75
83	The biomolecular corona of nanoparticles in circulating biological media. Nanoscale, 2015, 7, 13958-13966.	5.6	127
84	Applications of nanomaterials in modern medicine. Rendiconti Lincei, 2015, 26, 231-237.	2.2	5
85	Stealth Effect of Biomolecular Corona on Nanoparticle Uptake by Immune Cells. Langmuir, 2015, 31, 10764-10773.	3.5	102
86	Getting the most from gene delivery by repeated DNA transfections. Applied Physics Letters, 2015, 106, 233701.	3.3	4
87	Killing cancer cells using nanotechnology: novel poly(I:C) loaded liposome–silica hybrid nanoparticles. Journal of Materials Chemistry B, 2015, 3, 7408-7416.	5.8	30
88	Lipid composition: a "key factor―for the rational manipulation of the liposome–protein corona by liposome design. RSC Advances, 2015, 5, 5967-5975.	3.6	77
89	New views and insights into intracellular trafficking of drug-delivery systems by fluorescence fluctuation spectroscopy. Therapeutic Delivery, 2014, 5, 173-188.	2.2	1
90	Exact occupation probabilities for intermittent transport and application to image correlation spectroscopy. New Journal of Physics, 2014, 16, 113057.	2.9	5

#	Article	IF	CITATIONS
91	Size and charge of nanoparticles following incubation with human plasma of healthy and pancreatic cancer patients. Colloids and Surfaces B: Biointerfaces, 2014, 123, 673-678.	5.0	59
92	Mechanistic evaluation of the transfection barriers involved in lipid-mediated gene delivery: Interplay between nanostructure and composition. Biochimica Et Biophysica Acta - Biomembranes, 2014, 1838, 957-967.	2.6	57
93	Effect of polyethyleneglycol (PEC) chain length on the bio–nano-interactions between PEGylated lipid nanoparticles and biological fluids: from nanostructure to uptake in cancer cells. Nanoscale, 2014, 6, 2782.	5.6	433
94	A proteomics-based methodology to investigate the protein corona effect for targeted drug delivery. Molecular BioSystems, 2014, 10, 2815-2819.	2.9	17
95	The liposome–protein corona in mice and humans and its implications for in vivo delivery. Journal of Materials Chemistry B, 2014, 2, 7419-7428.	5.8	85
96	Analytical Methods for Characterizing the Nanoparticle–Protein Corona. Chromatographia, 2014, 77, 755-769.	1.3	58
97	Effect of DOPE and cholesterol on the protein adsorption onto lipid nanoparticles. Journal of Nanoparticle Research, 2013, 15, 1.	1.9	36
98	Structural characterization of cationic liposome/poly(I:C) complexes showing high ability in eliminating prostate cancer cells. RSC Advances, 2013, 3, 24597.	3.6	3
99	Mechanistic Understanding of Gene Delivery Mediated by Highly Efficient Multicomponent Envelope-Type Nanoparticle Systems. Molecular Pharmaceutics, 2013, 10, 4654-4665.	4.6	52
100	Label-free quantitative analysis for studying the interactions between nanoparticles and plasma proteins. Analytical and Bioanalytical Chemistry, 2013, 405, 635-645.	3.7	26
101	Time Evolution of Nanoparticle–Protein Corona in Human Plasma: Relevance for Targeted Drug Delivery. Langmuir, 2013, 29, 6485-6494.	3.5	248
102	Interaction of pH-sensitive non-phospholipid liposomes with cellular mimetic membranes. Biomedical Microdevices, 2013, 15, 299-309.	2.8	22
103	Selective Targeting Capability Acquired with a Protein Corona Adsorbed on the Surface of 1,2-Dioleoyl-3-trimethylammonium Propane/DNA Nanoparticles. ACS Applied Materials & Interfaces, 2013, 5, 13171-13179.	8.0	150
104	The role of cytoskeleton networks on lipid-mediated delivery of DNA. Therapeutic Delivery, 2013, 4, 191-202.	2.2	22
105	The protein corona effect for targeted drug delivery. Bioinspired, Biomimetic and Nanobiomaterials, 2013, 2, 54-57.	0.9	24
106	Do plasma proteins distinguish between liposomes of varying charge density?. Journal of Proteomics, 2012, 75, 1924-1932.	2.4	65
107	Cationic liposome/DNA complexes: from structure to interactions with cellular membranes. European Biophysics Journal, 2012, 41, 815-829.	2.2	93
108	Intracellular trafficking of cationic liposome–DNA complexes in living cells. Soft Matter, 2012, 8, 7919.	2.7	22

#	Article	IF	CITATIONS
109	Cholesterol-Dependent Macropinocytosis and Endosomal Escape Control the Transfection Efficiency of Lipoplexes in CHO Living Cells. Molecular Pharmaceutics, 2012, 9, 334-340.	4.6	90
110	Evolution of the Protein Corona of Lipid Gene Vectors as a Function of Plasma Concentration. Langmuir, 2011, 27, 15048-15053.	3.5	101
111	Factors Determining the Superior Performance of Lipid/DNA/Protammine Nanoparticles over Lipoplexes. Journal of Medicinal Chemistry, 2011, 54, 4160-4171.	6.4	51
112	Role of temperature-independent lipoplex–cell membrane interactions in the efficiency boost of multicomponent lipoplexes. Cancer Gene Therapy, 2011, 18, 543-552.	4.6	24
113	Differential analysis of "protein corona―profile adsorbed onto different nonviral gene delivery systems. Analytical Biochemistry, 2011, 419, 180-189.	2.4	38
114	Shotgun proteomic analytical approach for studying proteins adsorbed onto liposome surface. Analytical and Bioanalytical Chemistry, 2011, 401, 1195-1202.	3.7	29
115	DNA affects the composition of lipoplex protein corona: A proteomics approach. Proteomics, 2011, 11, 3349-3358.	2.2	30
116	Existence of hybrid structures in cationic liposome/DNA complexes revealed by their interaction with plasma proteins. Colloids and Surfaces B: Biointerfaces, 2011, 82, 141-146.	5.0	41
117	Effect of membrane charge density on the protein corona of cationic liposomes: Interplay between cationic charge and surface area. Applied Physics Letters, 2011, 99, 033702.	3.3	24
118	Programmed packaging of multicomponent envelope-type nanoparticle system for gene delivery. Applied Physics Letters, 2010, 96, .	3.3	5
119	Analysis of plasma protein adsorption onto DC-Chol-DOPE cationic liposomes by HPLC-CHIP coupled to a Q-TOF mass spectrometer. Analytical and Bioanalytical Chemistry, 2010, 398, 2895-2903.	3.7	38
120	Phase diagram of 3β-[N-(N,N-dimethylaminoethane)-carbamoyl]- cholesterolâ^'dioleoylphosphatidylethanolamine/DNA complexes suggests strategies for efficient lipoplex transfection. Applied Physics Letters, 2010, 96, 183703.	3.3	2
121	Toward an objective evaluation of cell transfection performance. Applied Physics Letters, 2010, 97, 153702.	3.3	Ο
122	Effect of Cholesterol on the Formation and Hydration Behavior of Solid-Supported Niosomal Membranes. Langmuir, 2010, 26, 2268-2273.	3.5	42
123	Universality of DNA Adsorption Behavior on the Cationic Membranes of Nanolipoplexes. Journal of Physical Chemistry B, 2010, 114, 2028-2032.	2.6	22
124	Tailoring Lipoplex Composition to the Lipid Composition of Plasma Membrane: A Trojan Horse for Cell Entry?. Langmuir, 2010, 26, 13867-13873.	3.5	43
125	Surface adsorption of protein corona controls the cell internalization mechanism of DC-Chol–DOPE/DNA lipoplexes in serum. Biochimica Et Biophysica Acta - Biomembranes, 2010, 1798, 536-543.	2.6	124
126	Effect of hydration on the structure of caveolae membranes. Applied Physics Letters, 2009, 94, 153901.	3.3	5

#	Article	IF	CITATIONS
127	Surface area of lipid membranes regulates the DNA-binding capacity of cationic liposomes. Applied Physics Letters, 2009, 94, .	3.3	11
128	Toward the Rational Design of Lipid Gene Vectors: Shape Coupling between Lipoplex and Anionic Cellular Lipids Controls the Phase Evolution of Lipoplexes and the Efficiency of DNA Release. ACS Applied Materials & Interfaces, 2009, 1, 2237-2249.	8.0	47
129	Structural Stability and Increase in Size Rationalize the Efficiency of Lipoplexes in Serum. Langmuir, 2009, 25, 3013-3021.	3.5	41
130	Efficient Escape from Endosomes Determines the Superior Efficiency of Multicomponent Lipoplexes. Journal of Physical Chemistry B, 2009, 113, 4995-4997.	2.6	38
131	Effect of hydration on the structure of solid-supported Niosomal membranes investigated by in situ energy dispersive X-ray diffraction. Chemical Physics Letters, 2008, 462, 307-312.	2.6	20
132	The use of energy dispersive X-ray diffraction (EDXD) for the investigation of the structural and compositional features of old and modern papers. Microchemical Journal, 2008, 88, 107-112.	4.5	5
133	A study of cyclohexane, piperidine and morpholine with X-ray diffraction and molecular simulations. Journal of Molecular Liquids, 2008, 139, 23-28.	4.9	27
134	Effect of pH on the structure of lipoplexes. Journal of Applied Physics, 2008, 104, 014701.	2.5	6
135	Enhanced Transfection Efficiency of Multicomponent Lipoplexes in the Regime of Optimal Membrane Charge Density. Journal of Physical Chemistry B, 2008, 112, 11298-11304.	2.6	41
136	On the correlation between phase evolution of lipoplexes/anionic lipid mixtures and DNA release. Applied Physics Letters, 2007, 91, 143903.	3.3	8
137	Hydration effect on the structure of dioleoylphosphatidylcholine bilayers. Applied Physics Letters, 2007, 90, 183901.	3.3	13
138	Transfection efficiency boost by designer multicomponent lipoplexes. Biochimica Et Biophysica Acta - Biomembranes, 2007, 1768, 2280-2292.	2.6	56
139	Interaction of Lipoplexes with Anionic Lipids Resulting in DNA Release is a Two-Stage Process. Langmuir, 2007, 23, 8713-8717.	3.5	32
140	Structural Stability against Disintegration by Anionic Lipids Rationalizes the Efficiency of Cationic Liposome/DNA Complexes. Langmuir, 2007, 23, 4498-4508.	3.5	45
141	Observation of a Rectangular DNA Superlattice in the Liquid-Crystalline Phase of Cationic Lipid/DNA Complexes. Journal of the American Chemical Society, 2007, 129, 10092-10093.	13.7	17
142	Role of the Spacer Stereochemistry on the Structure of Solid-Supported Gemini Surfactants Aggregates. Langmuir, 2007, 23, 10040-10043.	3.5	9
143	DNA release from cationic liposome/DNA complexes by anionic lipids. Applied Physics Letters, 2006, 89, 233903.	3.3	13
144	Structure and Phase Behavior of Self-Assembled DPPCâ^'DNAâ^'Metal Cation Complexes. Journal of Physical Chemistry B, 2006, 110, 13203-13211.	2.6	26

#	Article	IF	CITATIONS
145	One-Dimensional Thermotropic Dilatation Area of Lipid Headgroups within Lamellar Lipid/DNA Complexes. Langmuir, 2006, 22, 4267-4273.	3.5	23
146	Conformational changes of bovine β-trypsin and trypsinogen induced by divalent ions: An energy-dispersive X-ray diffraction and functional study. Archives of Biochemistry and Biophysics, 2006, 449, 157-163.	3.0	2
147	How lipid hydration and temperature affect the structure of DC-Chol–DOPE/DNA lipoplexes. Chemical Physics Letters, 2006, 422, 439-445.	2.6	28
148	Formation of overcharged cationic lipid/DNA complexes. Chemical Physics Letters, 2006, 429, 250-254.	2.6	15
149	Two-Dimensional Lipid Mixing Entropy Regulates the Formation of Multicomponent Lipoplexes. Journal of Physical Chemistry B, 2006, 110, 20829-20835.	2.6	17
150	In situ formation of solid-supported lipid/DNA complexes. Chemical Physics Letters, 2005, 405, 252-257.	2.6	4
151	Effect of hydration on the long-range order of lipid multilayers investigated by in situ time-resolved energy dispersive X-ray diffraction. Chemical Physics Letters, 2005, 409, 331-336.	2.6	17
152	Do DC-Chol/DOPE-DNA complexes really form an inverted hexagonal phase?. Chemical Physics Letters, 2005, 411, 327-332.	2.6	28
153	A new experimental setup for the study of lipid hydration by energy dispersive X-ray diffraction. Chemical Physics Letters, 2005, 414, 456-460.	2.6	11
154	Inclusion of a Photosensitizer in Liposomes Formed by DMPC/Gemini Surfactant:Â Correlation between Physicochemical and Biological Features of the Complexes. Journal of Medicinal Chemistry, 2005, 48, 4882-4891.	6.4	65
155	Effect of hydration on the structure of oriented lipid membranes investigated by in situ time-resolved energy dispersive x-ray diffraction. Applied Physics Letters, 2005, 86, 253902.	3.3	10
156	Lipid mixing upon deoxyribonucleic acid-induced liposomes fusion investigated by synchrotron small-angle x-ray scattering. Applied Physics Letters, 2005, 87, 133901.	3.3	33
157	Multicomponent Cationic Lipidâ `DNA Complex Formation:Â Role of Lipid Mixing. Langmuir, 2005, 21, 11582-11587.	3.5	65
158	Segregation and Phase Transition in Mixed Lipid Films. Langmuir, 2005, 21, 9137-9142.	3.5	11
159	Hydration kinetics of oriented lipid membranes investigated by energy dispersive x-ray diffraction. Applied Physics Letters, 2004, 85, 1630-1632.	3.3	5
160	Structural features of a cationic gemini surfactant at full hydration investigated by energy dispersive X-ray diffraction. Chemical Physics Letters, 2004, 386, 76-82.	2.6	14
161	Structure of solid-supported lipid–DNA–metal complexes investigated by energy dispersive X-ray diffraction. Chemical Physics Letters, 2004, 397, 138-143.	2.6	10
162	DNA–DNA electrostatic interactions within cationic lipid/DNA lamellar complexes. Chemical Physics Letters, 2004, 400, 314-319.	2.6	25

#	Article	lF	CITATIONS
163	Dynamical properties of oriented lipid membranes studied by elastic incoherent neutron scattering. Physica B: Condensed Matter, 2004, 350, E955-E955.	2.7	0
164	The Structure of Gemini Surfactant Self-Assemblies Investigated by Energy Dispersive X-ray Diffraction. Journal of Physical Chemistry B, 2003, 107, 12268-12274.	2.6	10
165	Dynamics of liposomes gene vectors studied by anelastic spectroscopy. Applied Physics Letters, 2003, 83, 2701-2703.	3.3	7
166	Protofibrils within fibrin fibres are packed together in a regular array. Thrombosis and Haemostasis, 2003, 89, 632-6.	3.4	9
167	Changes in protein dynamics induced under Gdn-HCl denaturation. Applied Physics A: Materials Science and Processing, 2002, 74, s1579-s1581.	2.3	3
168	Self-assembly of cationic liposomes–DNA complexes: a structural and thermodynamic study by EDXD. Chemical Physics Letters, 2002, 351, 222-228.	2.6	36
169	A new approach for the study of cationic lipid–DNA complexes by energy dispersive X-ray diffraction. Chemical Physics Letters, 2002, 366, 200-204.	2.6	17
170	Conformational study of proteins by SAXS and EDXD: the case of trypsin and trypsinogen. European Biophysics Journal, 2001, 30, 163-170.	2.2	24