
Mohammad Mansoob Khan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6527178/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Band gap engineered TiO ₂ nanoparticles for visible light induced photoelectrochemical and photocatalytic studies. Journal of Materials Chemistry A, 2014, 2, 637-644.	10.3	751
2	Conducting PANI stimulated ZnO system for visible light photocatalytic degradation of coloured dyes. Journal of Molecular Liquids, 2016, 221, 1029-1033.	4.9	608
3	ZnO/Ag/CdO nanocomposite for visible light-induced photocatalytic degradation of industrial textile effluents. Journal of Colloid and Interface Science, 2015, 452, 126-133.	9.4	579
4	Nitrogen-doped titanium dioxide (N-doped TiO ₂) for visible light photocatalysis. New Journal of Chemistry, 2016, 40, 3000-3009.	2.8	549
5	Oxygen vacancy induced band gap narrowing of ZnO nanostructures by an electrochemically active biofilm. Nanoscale, 2013, 5, 9238.	5.6	523
6	Ce3+-ion-induced visible-light photocatalytic degradation and electrochemical activity of ZnO/CeO2 nanocomposite. Scientific Reports, 2016, 6, 31641.	3.3	506
7	Metal oxides as photocatalysts. Journal of Saudi Chemical Society, 2015, 19, 462-464.	5.2	432
8	ZnO/Ag/Mn ₂ O ₃ nanocomposite for visible light-induced industrial textile effluent degradation, uric acid and ascorbic acid sensing and antimicrobial activity. RSC Advances, 2015, 5, 34645-34651.	3.6	426
9	Biogenic Synthesis, Photocatalytic, and Photoelectrochemical Performance of Ag–ZnO Nanocomposite. Journal of Physical Chemistry C, 2013, 117, 27023-27030.	3.1	368
10	Defect-Induced Band Gap Narrowed CeO ₂ Nanostructures for Visible Light Activities. Industrial & Engineering Chemistry Research, 2014, 53, 9754-9763.	3.7	278
11	Band gap engineering of CeO ₂ nanostructure using an electrochemically active biofilm for visible light applications. RSC Advances, 2014, 4, 16782-16791.	3.6	266
12	Au@TiO2 nanocomposites for the catalytic degradation of methyl orange and methylene blue: An electron relay effect. Journal of Industrial and Engineering Chemistry, 2014, 20, 1584-1590.	5.8	234
13	Highly visible light active Ag@TiO2 nanocomposites synthesized using an electrochemically active biofilm: a novel biogenic approach. Nanoscale, 2013, 5, 4427.	5.6	219
14	ZnO/CdO nanocomposites for textile effluent degradation and electrochemical detection. Journal of Molecular Liquids, 2015, 209, 374-380.	4.9	163
15	Band gap narrowing of titanium dioxide (TiO2) nanocrystals by electrochemically active biofilms and their visible light activity. Nanoscale, 2013, 5, 6323.	5.6	155
16	Fungi-assisted silver nanoparticle synthesis and their applications. Bioprocess and Biosystems Engineering, 2018, 41, 1-20.	3.4	151
17	Environmentally Sustainable Fabrication of Ag@ <i>g-</i> C ₃ N ₄ Nanostructures and Their Multifunctional Efficacy as Antibacterial Agents and Photocatalysts. ACS Applied Nano Materials, 2018, 1, 2912-2922.	5.0	142
18	Phytogenic fabrication of ZnO and gold decorated ZnO nanoparticles for photocatalytic degradation of Rhodamine B. Journal of Environmental Chemical Engineering, 2021, 9, 104725.	6.7	141

#	Article	IF	CITATIONS
19	CdS-graphene Nanocomposite for Efficient Visible-light-driven Photocatalytic and Photoelectrochemical Applications. Journal of Colloid and Interface Science, 2016, 482, 221-232.	9.4	140
20	Ce3+-ion, Surface Oxygen Vacancy, and Visible Light-induced Photocatalytic Dye Degradation and Photocapacitive Performance of CeO2-Graphene Nanostructures. Scientific Reports, 2017, 7, 5928.	3.3	133
21	Biogenic synthesis of a Ag–graphene nanocomposite with efficient photocatalytic degradation, electrical conductivity and photoelectrochemical performance. New Journal of Chemistry, 2015, 39, 8121-8129.	2.8	130
22	Plant-Extract-Mediated SnO ₂ Nanoparticles: Synthesis and Applications. ACS Sustainable Chemistry and Engineering, 2020, 8, 3040-3054.	6.7	127
23	Silver nanoparticles and defect-induced visible light photocatalytic and photoelectrochemical performance of Ag@m-TiO2 nanocomposite. Solar Energy Materials and Solar Cells, 2015, 141, 162-170.	6.2	126
24	Biogenic Fabrication of Au@CeO ₂ Nanocomposite with Enhanced Visible Light Activity. Journal of Physical Chemistry C, 2014, 118, 9477-9484.	3.1	123
25	Fabrication of WO ₃ nanorods on graphene nanosheets for improved visible light-induced photocapacitive and photocatalytic performance. RSC Advances, 2016, 6, 20824-20833.	3.6	121
26	Mechanothermal synthesis of Ag/TiO2 for photocatalytic methyl orange degradation and hydrogen production. Chemical Engineering Research and Design, 2018, 120, 339-347.	5.6	106
27	Highly visible light active Ag@ZnO nanocomposites synthesized by gel-combustion route. Journal of Industrial and Engineering Chemistry, 2014, 20, 1602-1607.	5.8	104
28	Visible light-driven photocatalytic and photoelectrochemical studies of Ag–SnO ₂ nanocomposites synthesized using an electrochemically active biofilm. RSC Advances, 2014, 4, 26013-26021.	3.6	103
29	Electrochemically active biofilm assisted synthesis of Ag@CeO2 nanocomposites for antimicrobial activity, photocatalysis and photoelectrodes. Journal of Colloid and Interface Science, 2014, 431, 255-263.	9.4	102
30	Degradation of azo dyes under different wavelengths of UV light with chitosan-SnO2 nanocomposites. Journal of Molecular Liquids, 2017, 232, 423-430.	4.9	102
31	Visible light-induced enhanced photoelectrochemical and photocatalytic studies of gold decorated SnO ₂ nanostructures. New Journal of Chemistry, 2015, 39, 2758-2766.	2.8	101
32	Diversity of Bacterial Synthesis of Silver Nanoparticles. BioNanoScience, 2018, 8, 43-59.	3.5	99
33	Polythiophene nanocomposites for photodegradation applications: Past, present and future. Journal of Saudi Chemical Society, 2015, 19, 494-504.	5.2	91
34	Microbial fuel cell assisted band gap narrowed TiO2 for visible light-induced photocatalytic activities and power generation. Scientific Reports, 2018, 8, 1723.	3.3	91
35	Gold nanoparticles-sensitized wide and narrow band gap TiO ₂ for visible light applications: a comparative study. New Journal of Chemistry, 2015, 39, 4708-4715.	2.8	90
36	Recent progress of metal–graphene nanostructures in photocatalysis. Nanoscale, 2018, 10, 9427-9440.	5.6	89

#	Article	IF	CITATIONS
37	Fabrication of ZnO, ZnS, Ag-ZnS, and Au-ZnS microspheres for photocatalytic activities, CO oxidation and 2-hydroxyterephthalic acid synthesis. Journal of Alloys and Compounds, 2016, 675, 46-56.	5.5	85
38	Potentials of Costus woodsonii leaf extract in producing narrow band gap ZnO nanoparticles. Materials Science in Semiconductor Processing, 2019, 91, 194-200.	4.0	84
39	Simultaneous Enhancement of Methylene Blue Degradation and Power Generation in a Microbial Fuel Cell by Gold Nanoparticles. Industrial & Engineering Chemistry Research, 2013, 52, 8174-8181.	3.7	81
40	Enhanced Thermal Stability under DC Electrical Conductivity Retention and Visible Light Activity of Ag/TiO ₂ @Polyaniline Nanocomposite Film. ACS Applied Materials & Interfaces, 2014, 6, 8124-8133.	8.0	81
41	Cobalt-Doped Ceria/Reduced Graphene Oxide Nanocomposite as an Efficient Oxygen Reduction Reaction Catalyst and Supercapacitor Material. Journal of Physical Chemistry C, 2017, 121, 20165-20176.	3.1	81
42	Green synthesis, photocatalytic and photoelectrochemical performance of an Au–Graphene nanocomposite. RSC Advances, 2015, 5, 26897-26904.	3.6	80
43	Recent progress of algae and blue–green algae-assisted synthesis of gold nanoparticles for various applications. Bioprocess and Biosystems Engineering, 2019, 42, 1-15.	3.4	76
44	Enhanced thermoelectric behaviour and visible light activity of Ag@TiO ₂ /polyaniline nanocomposite synthesized by biogenic-chemical route. RSC Advances, 2014, 4, 23713-23719.	3.6	75
45	Synthesis of Cysteine Capped Silver Nanoparticles by Electrochemically Active Biofilm and their Antibacterial Activities. Bulletin of the Korean Chemical Society, 2012, 33, 2592-2596.	1.9	74
46	pTSA doped conducting graphene/polyaniline nanocomposite fibers: Thermoelectric behavior and electrode analysis. Chemical Engineering Journal, 2014, 242, 155-161.	12.7	73
47	Line defect Ce3+ induced Ag/CeO2/ZnO nanostructure for visible-light photocatalytic activity. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 353, 499-506.	3.9	73
48	Novel Ag@TiO2 nanocomposite synthesized by electrochemically active biofilm for nonenzymatic hydrogen peroxide sensor. Materials Science and Engineering C, 2013, 33, 4692-4699.	7.3	70
49	Electrochemically active biofilm mediated bio-hydrogen production catalyzed by positively charged gold nanoparticles. International Journal of Hydrogen Energy, 2013, 38, 5243-5250.	7.1	70
50	Chalcogenides as photocatalysts. New Journal of Chemistry, 2021, 45, 19622-19635.	2.8	67
51	Highly photoactive SnO ₂ nanostructures engineered by electrochemically active biofilm. New Journal of Chemistry, 2014, 38, 2462-2469.	2.8	66
52	Green-synthesized CeO ₂ nanoparticles for photocatalytic, antimicrobial, antioxidant and cytotoxicity activities. Journal of Materials Chemistry B, 2021, 9, 5599-5620.	5.8	66
53	Biofilm-Assisted Fabrication of Ag@SnO ₂ - <i>g</i> C ₃ N ₄ Nanostructures for Visible Light-Induced Photocatalysis and Photoelectrochemical Performance. Journal of Physical Chemistry C, 2019, 123, 20936-20948.	3.1	60
54	Enhanced Performance of a Microbial Fuel Cell Using CNT/MnO ₂ Nanocomposite as a Bioanode Material. Journal of Nanoscience and Nanotechnology, 2013, 13, 7712-7716.	0.9	58

#	Article	IF	CITATIONS
55	TiO2/BiOX (X=Cl, Br, I) hybrid microspheres for artificial waste water and real sample treatment under visible light irradiation. Separation and Purification Technology, 2016, 160, 28-42.	7.9	58
56	Production of bioelectricity, bio-hydrogen, high value chemicals and bioinspired nanomaterials by electrochemically active biofilms. Biotechnology Advances, 2013, 31, 915-924.	11.7	57
57	Zinc oxide and zinc oxide-based nanostructures: biogenic and phytogenic synthesis, properties and applications. Bioprocess and Biosystems Engineering, 2021, 44, 1333-1372.	3.4	55
58	Environmentally sustainable biogenic fabrication of AuNP decorated-graphitic g-C ₃ N ₄ nanostructures towards improved photoelectrochemical performances. RSC Advances, 2018, 8, 13898-13909.	3.6	50
59	Nitrogen-doped TiO2 fibers for visible-light-induced photocatalytic activities. Ceramics International, 2020, 46, 16743-16753.	4.8	48
60	ZnO-based antimicrobial coatings for biomedical applications. Bioprocess and Biosystems Engineering, 2022, 45, 1421-1445.	3.4	48
61	Enhanced thermoelectric performance and ammonia sensing properties of sulfonated polyaniline/graphene thin films. Materials Letters, 2014, 114, 159-162.	2.6	46
62	Mixed Culture Electrochemically Active Biofilms and their Microscopic and Spectroelectrochemical Studies. ACS Sustainable Chemistry and Engineering, 2014, 2, 423-432.	6.7	46
63	Positively Charged Gold Nanoparticles Synthesized by Electrochemically Active Biofilm—A Biogenic Approach. Journal of Nanoscience and Nanotechnology, 2013, 13, 6079-6085.	0.9	44
64	Electrically conductive polyaniline sensitized defective-TiO ₂ for improved visible light photocatalytic and photoelectrochemical performance: a synergistic effect. New Journal of Chemistry, 2015, 39, 8381-8388.	2.8	42
65	Selected nanotechnologies and nanostructures for drug delivery, nanomedicine and cure. Bioprocess and Biosystems Engineering, 2020, 43, 1339-1357.	3.4	42
66	Influence of Mg and Cu dual-doping on phytogenic synthesized ZnO for light induced antibacterial and radical scavenging activities. Materials Science in Semiconductor Processing, 2021, 128, 105761.	4.0	41
67	Synergistic effect of g-C3N4, Ni(OH)2 and halloysite in nanocomposite photocatalyst on efficient photocatalytic hydrogen generation. Renewable Energy, 2019, 138, 434-444.	8.9	40
68	Improved electrode performance in microbial fuel cells and the enhanced visible light-induced photoelectrochemical behaviour of PtO @M-TiO2 nanocomposites. Ceramics International, 2015, 41, 9131-9139.	4.8	39
69	Binary flux-promoted formation of trigonal ZnIn ₂ S ₄ layered crystals using ZnS-containing industrial waste and their photocatalytic performance for H ₂ production. Green Chemistry, 2018, 20, 3845-3856.	9.0	38
70	Antibacterial Studies of ZnO and Cu-Doped ZnO Nanoparticles Synthesized Using Aqueous Leaf Extract of Stachytarpheta jamaicensis. BioNanoScience, 2020, 10, 1037-1048.	3.5	38
71	A simple biogenic route to rapid synthesis of Au@TiO2 nanocomposites by electrochemically active biofilms. Journal of Nanoparticle Research, 2012, 14, 1.	1.9	37
72	Phytogenic Synthesis of Band Gap-Narrowed ZnO Nanoparticles Using the Bulb Extract of Costus woodsonii. BioNanoScience, 2019, 9, 334-344.	3.5	37

#	Article	IF	CITATIONS
73	Spectral and electrochemical characterization of bimetallic complexes of a novel 32-membered unsymmetrical [N12] macrocycle. Transition Metal Chemistry, 2007, 32, 927-935.	1.4	36
74	CeO ₂ -based nanocomposites: An advanced alternative to TiO ₂ and ZnO in sunscreens. Materials Express, 2019, 9, 185-202.	0.5	36
75	Antibacterial activities of zinc oxide and Mn-doped zinc oxide synthesized using Melastoma malabathricum (L.) leaf extract. Bioprocess and Biosystems Engineering, 2020, 43, 1499-1508.	3.4	36
76	Green synthesis of CeO ₂ and Zr/Sn-dual doped CeO ₂ nanoparticles with photoantioxidant and antibiofilm activities. Biomaterials Science, 2021, 9, 4854-4869.	5.4	36
77	Photoantioxidant studies of SnO2 nanoparticles fabricated using aqueous leaf extract of Tradescantia spathacea. Solid State Sciences, 2020, 105, 106279.	3.2	33
78	Effect of Ni-doping on properties of the SnO2 synthesized using Tradescantia spathacea for photoantioxidant studies. Materials Chemistry and Physics, 2020, 252, 123293.	4.0	32
79	Antifungal and Antibacterial Assay by Silver Nanoparticles Synthesized from Aqueous Leaf Extract of Trigonella foenum-graecum. BioNanoScience, 2019, 9, 597-602.	3.5	31
80	Comprehensive review on carbon nanotubes embedded in different metal and polymer matrix: fabrications and applications. Critical Reviews in Solid State and Materials Sciences, 2022, 47, 837-864.	12.3	31
81	Visible light induced antibacterial and antioxidant studies of ZnO and Cu-doped ZnO fabricated using aqueous leaf extract of Ziziphus mauritiana Lam. Journal of Environmental Chemical Engineering, 2021, 9, 105481.	6.7	30
82	Molybdenum Disulfide-Based Nanomaterials for Visible-Light-Induced Photocatalysis. ACS Omega, 2022, 7, 22089-22110.	3.5	30
83	Enhanced optical, visible light catalytic and electrochemical properties of Au@TiO2 nanocomposites. Journal of Industrial and Engineering Chemistry, 2013, 19, 1845-1850.	5.8	29
84	Photoantioxidant and antibiofilm studies of green synthesized Sn-doped CeO ₂ nanoparticles using aqueous leaf extracts of <i>Pometia pinnata</i> . New Journal of Chemistry, 2021, 45, 7816-7829.	2.8	29
85	Recent Progress and Future Perspectives of Antibiofilm Drugs Immobilized on Nanomaterials. Current Pharmaceutical Biotechnology, 2018, 19, 631-643.	1.6	29
86	Enhancement in the Photocatalytic Activity of Au@TiO ₂ Nanocomposites by Pretreatment of TiO ₂ Nanocomposites by Pretreatment of TiO ₂ with UV Light. Bulletin of the Korean Chemical Society, 2012, 33, 1753-1758.	1.9	29
87	Effect of Mg doping on ZnO fabricated using aqueous leaf extract of Ziziphus mauritiana Lam. for antioxidant and antibacterial studies. Bioprocess and Biosystems Engineering, 2021, 44, 875-889.	3.4	28
88	Nanocomposites for Visible Light-induced Photocatalysis. Springer Series on Polymer and Composite Materials, 2017, , .	0.7	28
89	Defected graphene nano-platelets for enhanced hydrophilic nature and visible light-induced photoelectrochemical performances. Journal of Physics and Chemistry of Solids, 2017, 104, 233-242.	4.0	27
90	Electrochemically active biofilm-assisted biogenic synthesis of an Ag-decorated ZnO@C core–shell ternary plasmonic photocatalyst with enhanced visible-photocatalytic activity. New Journal of Chemistry, 2018, 42, 1995-2005.	2.8	27

#	Article	IF	CITATIONS
91	Machine-Learning-Based Cyclic Voltammetry Behavior Model for Supercapacitance of Co-Doped Ceria/rGO Nanocomposite. Journal of Chemical Information and Modeling, 2018, 58, 2517-2527.	5.4	27
92	Antioxidant and antibacterial studies of phytogenic fabricated ZnO using aqueous leaf extract of Ziziphus mauritiana Lam. Chemical Papers, 2021, 75, 3295-3308.	2.2	22
93	Optimization of positively charged gold nanoparticles synthesized using a stainless-steel mesh and its application for colorimetric hydrogen peroxide detection. Journal of Industrial and Engineering Chemistry, 2014, 20, 2003-2009.	5.8	19
94	Antibiofilm Action of ZnO, SnO2 and CeO2 Nanoparticles Towards Grampositive Biofilm Forming Pathogenic Bacteria. Recent Patents on Nanotechnology, 2020, 14, 239-249.	1.3	18
95	Synthesis of Positively Charged Gold Nanoparticles Using a Stainless-Steel Mesh. Journal of Nanoscience and Nanotechnology, 2013, 13, 6140-6144.	0.9	15
96	Effect of Co2+ and Ni2+ co-doping on SnO2 synthesized via phytogenic method for photoantioxidant studies and photoconversion of 4-nitrophenol. Materials Today Communications, 2020, 25, 101677.	1.9	15
97	Suppression of hyphal formation and virulence of <i>Candida albicans</i> by natural and synthetic compounds. Biofouling, 2021, 37, 626-655.	2.2	13
98	Fabrication of <scp>coâ€PVDF</scp> /modacrylic/ <scp>SiO₂</scp> nanofibrous membrane: Composite separator for safe and high performance lithiumâ€ion batteries. Journal of Applied Polymer Science, 2021, 138, 49835.	2.6	12
99	Green and Phytogenic Fabrication of Co-Doped SnO2 Using Aqueous Leaf Extract of Tradescantia spathacea for Photoantioxidant and Photocatalytic Studies. BioNanoScience, 2021, 11, 120-135.	3.5	12
100	La-substituted AgNbO3 for photocatalytic degradation of Rhodamine B and methylene blue dyes. Reaction Kinetics, Mechanisms and Catalysis, 2022, 135, 1687-1701.	1.7	12
101	Role of Anions in the Synthesis and Crystal Growth of Selected Semiconductors. Frontiers in Chemistry, 2022, 10, 881518.	3.6	12
102	Visible light active La-doped Ag3PO4 for photocatalytic degradation of dyes and reduction of Cr(VI). Solid State Sciences, 2022, 131, 106950.	3.2	12
103	DC electrical conductivity retention and electrical compensation of polyaniline by TiO2 at higher loading percentages in polyaniline@TiO2 nanocomposites. Electronic Materials Letters, 2015, 11, 559-564.	2.2	11
104	Positively Charged Gold Nanoparticles for Hydrogen Peroxide Detection. BioNanoScience, 2018, 8, 537-543.	3.5	11
105	Structural, Morphological and Optical Studies of CeO2 Nanoparticles Synthesized Using Aqueous Leaf Extract of Pometia pinnata. BioNanoScience, 2022, 12, 393-404.	3.5	10
106	Advances in chalcogenides and chalcogenides-based nanomaterials such as sulfides, selenides, and tellurides. , 2021, , 7-31.		9
107	Recent progress of phytogenic synthesis of ZnO, SnO2, and CeO2 nanomaterials. Bioprocess and Biosystems Engineering, 2022, 45, 619-645.	3.4	9
108	Microplastic accumulation in oysters along a Bornean coastline (Brunei, South China Sea): Insights into local sources and sinks. Marine Pollution Bulletin, 2022, 177, 113478.	5.0	9

#	Article	IF	CITATIONS
109	Phytogenic fabrication of CeO2@SnO2 heterojunction nanostructures for antioxidant studies. Chemical Papers, 2022, 76, 2071-2084.	2.2	8
110	Effect of La3+-doping in silver niobate for enhanced photocatalytic degradation of methylene blue and Rhodamine B. Chemical Physics Impact, 2022, 4, 100082.	3.5	8
111	Assessment of nitrate, nitrite and chloride in selected cured meat products and their exposure to school children in Brunei Darussalam. Journal of Food Composition and Analysis, 2020, 91, 103520.	3.9	7
112	Ion-Pair Facilitated Non-Enzymatic Electrochemical Sensing of Cadaverine and Putrescine. Journal of the Electrochemical Society, 2021, 168, 047505.	2.9	7
113	Effect of Zr doping on photoantioxidant and antibiofilm properties of CeO2 NPs fabricated using aqueous leaf extract of Pometia pinnata. Bioprocess and Biosystems Engineering, 2022, 45, 279-295.	3.4	7
114	Synthesis and Characterization of a Novel 32â€Membered Unsymmetrical Dinucleating [N12] Macrocycle: Preparation of Bimetallic Complexes M2LX2(ClO4)2(MÂ=ÂZn, Cd, or Hg; XÂ=ÂCl, NCS, or NO3). Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 2004, 34, 897-917.	1.8	6
115	Advanced Nanomaterials for Biological Applications. Journal of Nanomaterials, 2018, 2018, 1-2.	2.7	5
116	Nanomaterial-based biosensors for COVID-19 detection. Critical Reviews in Solid State and Materials Sciences, 2022, 47, 955-978.	12.3	5
117	Metal oxide powder photocatalysts. , 2018, , 5-18.		4
118	Introduction and fundamentals of chalcogenides and chalcogenides-based nanomaterials. , 2021, , 1-6.		4
119	Ru(III), Pd(II), Pt(III), and Pt(IV) Complexes of a Novel 32-Membered Unsymmetrical Dinucleating Macrocyclic Ligand. Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 2010, 40, 148-152.	0.6	2
120	Chalcogenides for visible light-induced photocatalysis. , 2022, , 185-195.		2
121	SYNTHESIS AND PHYSICO-CHEMICAL INVESTIGATIONS ON 16 AND 18 MEMBERED [N4] MACROCYCLES MODIFIED WITH APPROPRIATE CARBONYL FUNCTIONS - A CLOSER MIMIC TO A SYNTHETIC CYCLIC TETRAPEPTIDE; ISOLATION OF STABLE ENCAPSULATED DERIVATIVES WITH Zn(II),Cd(II) AND Hg(II) IONS. Main Group Metal Chemistry. 2001. 24.	1.6	1
122	Spectroscopic and physico-chemical characterization of Ir(I) and Ru(III) complexes of 32-membered unsymmetrical dinucleating macrocyclic ligand. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2014, 78, 257-263.	1.6	1
123	Polymer nanocomposite application in sorption processes for removal of environmental contaminants. , 2018, , 491-505.		1
124	Metal Oxide–Graphene and Metal–Graphene Nanocomposites for Energy and Environment. , 2019, , 285-294.		1
125	Plant-Assisted Fabrication of SnO2 and SnO2-Based Nanostructures for Various Applications. , 2019, , 285-297.		1

Photocatalytic N2 fixation using chalcogenide-based nanomaterials. , 2021, , 285-294.

1

#	Article	IF	CITATIONS
127	Principles and mechanisms of photocatalysis. , 2021, , 1-22.		1
128	Evaluation of Photoantioxidant Activities of SnO2, doped SnO2, and dual-doped SnO2 using Artificial Neural Networks and Neuro-fuzzy System. Materials Today Communications, 2022, , 103882.	1.9	1
129	Zinc oxide-based nanomaterials for photocatalytic degradation of environmental and agricultural pollutants. , 2021, , 543-568.		Ο
130	Synergistic Extraction of Europium (III) using Di-n-Butylsulfoxide and PicrolonicAcid. Combinatorial Chemistry and High Throughput Screening, 2021, 24, .	1.1	0
131	Smart polymer biomaterials for tissue engineering. , 2021, , 205-214.		0