
Martin J Kelly

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6526944/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Hypothalamic Kisspeptin Neurons and the Control of Homeostasis. Endocrinology, 2022, 163, .	2.8	12
2	Estrogenic regulation of reproduction and energy homeostasis by a triumvirate of hypothalamic arcuate neurons. Journal of Neuroendocrinology, 2022, 34, e13145.	2.6	8
3	Membrane and nuclear initiated estrogenic regulation of homeostasis. Steroids, 2021, 168, 108428.	1.8	1
4	CRISPR knockdown of Kcnq3 attenuates the M-current and increases excitability of NPY/AgRP neurons to alter energy balance. Molecular Metabolism, 2021, 49, 101218.	6.5	11
5	Arcuate and Preoptic Kisspeptin Neurons Exhibit Differential Projections to Hypothalamic Nuclei and Exert Opposite Postsynaptic Effects on Hypothalamic Paraventricular and Dorsomedial Nuclei in the Female Mouse. ENeuro, 2021, 8, ENEURO.0093-21.2021.	1.9	16
6	Deletion of <i>Stim1</i> in Hypothalamic Arcuate Nucleus Kiss1 Neurons Potentiates Synchronous GCaMP Activity and Protects against Diet-Induced Obesity. Journal of Neuroscience, 2021, 41, 9688-9701.	3.6	10
7	Estradiol Protects Neuropeptide Y/Agouti-Related Peptide Neurons against Insulin Resistance in Females. Neuroendocrinology, 2020, 110, 105-118.	2.5	18
8	Photorelease of 2-Arachidonoylglycerol in Live Cells. Journal of the American Chemical Society, 2019, 141, 16544-16547.	13.7	19
9	Arcuate Kisspeptin Neurons Coordinate Reproductive Activities with Metabolism. Seminars in Reproductive Medicine, 2019, 37, 131-140.	1.1	22
10	The 3rd World Conference on Kisspeptin, "Kisspeptin 2017: Brain and Beyond― Unresolved questions, challenges and future directions for the field. Journal of Neuroendocrinology, 2018, 30, e12600.	2.6	12
11	Estradiol Protects Proopiomelanocortin Neurons Against Insulin Resistance. Endocrinology, 2018, 159, 647-664.	2.8	52
12	Diverse actions of estradiol on anorexigenic and orexigenic hypothalamic arcuate neurons. Hormones and Behavior, 2018, 104, 146-155.	2.1	40
13	TRPCing around the hypothalamus. Frontiers in Neuroendocrinology, 2018, 51, 116-124.	5.2	16
14	Estradiol Drives the Anorexigenic Activity of Proopiomelanocortin Neurons in Female Mice. ENeuro, 2018, 5, ENEURO.0103-18.2018.	1.9	38
15	Estrogenic-dependent glutamatergic neurotransmission from kisspeptin neurons governs feeding circuits in females. ELife, 2018, 7, .	6.0	69
16	AgRP to Kiss1 neuron signaling links nutritional state and fertility. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 2413-2418.	7.1	168
17	Optogenetic Stimulation of Arcuate Nucleus Kiss1 Neurons Reveals a Steroid-Dependent Glutamatergic Input to POMC and AgRP Neurons in Male Mice. Molecular Endocrinology, 2016, 30, 630-644.	3.7	89
18	Estradiol Rapidly Attenuates ORL-1 Receptor-Mediated Inhibition of Proopiomelanocortin Neurons via G _q -Coupled, Membrane-Initiated Signaling. Neuroendocrinology, 2016, 103, 787-805.	2.5	21

MARTIN J KELLY

#	Article	IF	CITATIONS
19	Agouti-related peptide neural circuits mediate adaptive behaviors in the starved state. Nature Neuroscience, 2016, 19, 734-741.	14.8	223
20	High-frequency stimulation-induced peptide release synchronizes arcuate kisspeptin neurons and excites GnRH neurons. ELife, 2016, 5, .	6.0	159
21	17β-Estradiol Increases Persistent Na+ Current and Excitability of AVPV/PeN Kiss1 Neurons in Female Mice. Molecular Endocrinology, 2015, 29, 518-527.	3.7	44
22	Minireview: Neural Signaling of Estradiol in the Hypothalamus. Molecular Endocrinology, 2015, 29, 645-657.	3.7	38
23	Cross-talk between reproduction and energy homeostasis: central impact of estrogens, leptin and kisspeptin signaling. Hormone Molecular Biology and Clinical Investigation, 2014, 17, 109-128.	0.7	34
24	Research Resource: Gene Profiling of G Protein–Coupled Receptors in the Arcuate Nucleus of the Female. Molecular Endocrinology, 2014, 28, 1362-1380.	3.7	21
25	Insulin Excites Anorexigenic Proopiomelanocortin Neurons via Activation of Canonical Transient Receptor Potential Channels. Cell Metabolism, 2014, 19, 682-693.	16.2	179
26	A selective membrane estrogen receptor agonist maintains autonomic functions in hypoestrogenic states. Brain Research, 2013, 1514, 75-82.	2.2	9
27	Pacemaking kisspeptin neurons. Experimental Physiology, 2013, 98, 1535-1543.	2.0	22
28	Kisspeptin inhibits a slow afterhyperpolarization current via protein kinase C and reduces spike frequency adaptation in GnRH neurons. American Journal of Physiology - Endocrinology and Metabolism, 2013, 304, E1237-E1244.	3.5	22
29	Molecular mechanisms that drive estradiol-dependent burst firing of Kiss1 neurons in the rostral periventricular preoptic area. American Journal of Physiology - Endocrinology and Metabolism, 2013, 305, E1384-E1397.	3.5	57
30	Kisspeptin Activation of TRPC4 Channels in Female GnRH Neurons Requires PIP2 Depletion and cSrc Kinase Activation. Endocrinology, 2013, 154, 2772-2783.	2.8	51
31	Introduction. Neuroendocrinology, 2012, 96, 101-2.	2.5	0
32	Membrane-initiated actions of estradiol that regulate reproduction, energy balance and body temperature. Frontiers in Neuroendocrinology, 2012, 33, 376-387.	5.2	32
33	Physiological consequences of membrane-initiated estrogen signaling in the brain. Frontiers in Bioscience - Landmark, 2011, 16, 1560.	3.0	93
34	Fasting and 17Î2-Estradiol Differentially Modulate the M-Current in Neuropeptide Y Neurons. Journal of Neuroscience, 2011, 31, 11825-11835.	3.6	70
35	Molecular Properties of Kiss1 Neurons in the Arcuate Nucleus of the Mouse. Endocrinology, 2011, 152, 4298-4309.	2.8	113
36	Guinea Pig Kisspeptin Neurons Are Depolarized by Leptin via Activation of TRPC Channels. Endocrinology, 2011, 152, 1503-1514.	2.8	130

MARTIN J KELLY

#	Article	IF	CITATIONS
37	Leptin Excites Proopiomelanocortin Neurons via Activation of TRPC Channels. Journal of Neuroscience, 2010, 30, 1560-1565.	3.6	176
38	Contribution of a Membrane Estrogen Receptor to the Estrogenic Regulation of Body Temperature and Energy Homeostasis. Endocrinology, 2010, 151, 4926-4937.	2.8	101
39	Control of CNS neuronal excitability by estrogens via membrane-initiated signaling. Molecular and Cellular Endocrinology, 2009, 308, 17-25.	3.2	65
40	Membrane-initiated estrogen signaling in hypothalamic neurons. Molecular and Cellular Endocrinology, 2008, 290, 14-23.	3.2	94
41	Modulation of hypothalamic neuronal activity through a novel G-protein-coupled estrogen membrane receptor. Steroids, 2008, 73, 985-991.	1.8	103
42	Kisspeptin Depolarizes Gonadotropin-Releasing Hormone Neurons through Activation of TRPC-Like Cationic Channels. Journal of Neuroscience, 2008, 28, 4423-4434.	3.6	208
43	A G-Protein-Coupled Estrogen Receptor Is Involved in Hypothalamic Control of Energy Homeostasis. Journal of Neuroscience, 2006, 26, 5649-5655.	3.6	202
44	Estrogen Signaling in the Hypothalamus. Vitamins and Hormones, 2005, 71, 123-145.	1.7	44
45	Estrogen Modulation of Gâ€Proteinâ€Coupled Receptor Activation of Potassium Channels in the Central Nervous System. Annals of the New York Academy of Sciences, 2003, 1007, 6-9.	3.8	104
46	Hypothalamic Proopiomelanocortin Neurons Are Glucose Responsive and Express KATPChannels. Endocrinology, 2003, 144, 1331-1340.	2.8	324
47	Rapid Signaling of Estrogen in Hypothalamic Neurons Involves a Novel G-Protein-Coupled Estrogen Receptor that Activates Protein Kinase C. Journal of Neuroscience, 2003, 23, 9529-9540.	3.6	411
48	Baclofen inhibits guinea pig magnocellular neurones via activation of an inwardly rectifying K+ conductance. Journal of Physiology, 2003, 551, 295-308.	2.9	25
49	Estrogen modulation of K+ channel activity in hypothalamic neurons involved in the control of the reproductive axis. Steroids, 2002, 67, 447-456.	1.8	71
50	Rapid effects of estrogen on G protein-coupled receptor activation of potassium channels in the central nervous system (CNS). Journal of Steroid Biochemistry and Molecular Biology, 2002, 83, 187-193.	2.5	106
51	GnRH neurons and episodic bursting activity. Trends in Endocrinology and Metabolism, 2002, 13, 409-410.	7.1	36
52	Rapid actions of plasma membrane estrogen receptors. Trends in Endocrinology and Metabolism, 2001, 12, 152-156.	7.1	573
53	Effect of the μ-Opioid Agonist DAMGO on Medial Basal Hypothalamic Neurons in Beta-Endorphin Knockout Mice. Neuroendocrinology, 2000, 72, 208-217.	2.5	24
54	Modulation of G Protein-Coupled Receptors by an Estrogen Receptor that Activates Protein Kinase A. Molecular Pharmacology, 1997, 51, 605-612.	2.3	193

MARTIN J KELLY

#	Article	IF	CITATIONS
55	Effects of estrogen on the number of neurons expressing βâ€endorphin in the medial basal hypothalamus of the female guinea pig. Journal of Comparative Neurology, 1994, 341, 68-77.	1.6	55
56	Opioids Hyperpolarize β-Endorphin Neurons via μ-Receptor Activation of a Potassium Conductance. Neuroendocrinology, 1990, 52, 268-275.	2.5	87
57	Pro-Gonadotropin-Releasing Hormone (ProGnRH) and GnRH Content in the Preoptic Area and the Basal Hypothalamus of Anterior Medial Preoptic Nucleus/Suprachiasmatic Nucleus-Lesioned Persistent Estrous Rats*. Endocrinology, 1990, 127, 2654-2664.	2.8	47
58	Opioids act at μ-receptors to hyperpolarize arcuate neurons via an inwardly rectifying potassium conductance. Brain Research, 1990, 513, 15-23.	2.2	70
59	Plasma Prolactin and Luteinizing Hormone Profiles during the Estrous Cycle of the Female Rat: Effects of Surgically Induced Persistent Estrus. Neuroendocrinology, 1988, 47, 133-141.	2.5	48
60	Luteinizing Hormone-Releasing Hormone Neuronal System during the Estrous Cycle of the Female Rat:. Neuroendocrinology, 1986, 43, 564-576.	2.5	66
61	A new antiserum with conformational specificity for LHRH: Usefulness for radioimmunoassay and immunocytochemistry. Peptides, 1985, 6, 45-52.	2.4	89
62	Distribution of Substance P Neurons in the Epithalamus of the Rat: An Immunohistochemical Investigation. Journal of Pineal Research, 1984, 1, 355-370.	7.4	42
63	Distribution of immunoreactive substance P neurons in the hypothalamus and pituitary of the rhesus monkey. Journal of Comparative Neurology, 1984, 224, 51-59.	1.6	35
64	Tuberoinfundibular neurons: Dopaminergic and norepinephrinergic sensitivity. Brain Research, 1975, 89, 265-277.	2.2	54