
Joris P G M Cromsigt

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6526798/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Recreation and hunting differentially affect deer behaviour and sapling performance. Oikos, 2022, 2022, .	1.2	12
2	Playbacks of predator vocalizations reduce crop damage by ungulates. Agriculture, Ecosystems and Environment, 2022, 328, 107853.	2.5	16
3	Long-term frequent fires do not decrease topsoil carbon and nitrogen in an Afromontane grassland. African Journal of Range and Forage Science, 2022, 39, 44-55.	0.6	7
4	Herbivoreâ€induced branching increases sapling survival in temperate forest canopy gaps. Journal of Ecology, 2022, 110, 1390-1402.	1.9	6
5	How do forest management and wolf space-use affect diet composition of the wolf's main prey, the red deer versus a non-prey species, the European bison?. Forest Ecology and Management, 2021, 479, 118620.	1.4	8
6	Environmental controls on African herbivore responses to landscapes of fear. Oikos, 2021, 130, 171-186.	1.2	12
7	Predictors of browsing damage on commercial forests – A study linking nationwide management data. Forest Ecology and Management, 2021, 479, 118597.	1.4	11
8	Small shrubs with large importance? Smaller deer may increase the moose-forestry conflict through feeding competition over Vaccinium shrubs in the field layer. Forest Ecology and Management, 2021, 480, 118768.	1.4	13
9	Roads, forestry, and wolves interact to drive moose browsing behavior in Scandinavia. Ecosphere, 2021, 12, e03358.	1.0	10
10	Ungulate-adapted forestry shows promise for alleviating pine browsing damage. Forest Ecology and Management, 2021, 482, 118808.	1.4	4
11	Reply to Sitters and Olde Venterink: Untangling the relative importance of processes that influence fecal nutrient stoichiometry. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, e2020849118.	3.3	0
12	Integrating omics to characterize ecoâ€physiological adaptations: How moose diet and metabolism differ across biogeographic zones. Ecology and Evolution, 2021, 11, 3159-3183.	0.8	5
13	Spatial heterogeneity facilitates carnivore coexistence. Ecology, 2021, 102, e03319.	1.5	31
14	Declining recruitment and mass of Swedish moose calves linked to hot, dry springs and snowy winters. Global Ecology and Conservation, 2021, 27, e01594.	1.0	8
15	Wild ungulate species differ in their contribution to the transmission of Ixodes ricinus-borne pathogens. Parasites and Vectors, 2021, 14, 360.	1.0	19
16	Effects of cameraâ€ŧrap placement and number on detection of members of a mammalian assemblage. Ecosphere, 2021, 12, e03662.	1.0	16
17	Behavioral effects of wolf presence on moose habitat selection: testing the landscape of fear hypothesis in an anthropogenic landscape. Oecologia, 2021, 197, 101-116.	0.9	9
18	Structural diversity and tree density drives variation in the biodiversity–ecosystem function relationship of woodlands andÂsavannas. New Phytologist, 2021, 232, 579-594.	3.5	16

JORIS P G M CROMSIGT

#	Article	IF	CITATIONS
19	Summer and winter browsing affect conifer growth differently: An experimental study in a multi-species ungulate community. Forest Ecology and Management, 2021, 494, 119314.	1.4	3
20	Fire―and herbivoryâ€driven consumer control in a savannaâ€like temperate woodâ€pasture: An experimental approach. Journal of Ecology, 2021, 109, 4103-4114.	1.9	3
21	Megaherbivore impacts on ecosystem and Earth system functioning: the current state of the science. Ecography, 2021, 44, 1579-1594.	2.1	18
22	TRY plant trait database – enhanced coverage and open access. Global Change Biology, 2020, 26, 119-188.	4.2	1,038
23	Using byâ€catch data from wildlife surveys to quantify climatic parameters and timing of phenology for plants and animals using camera traps. Remote Sensing in Ecology and Conservation, 2020, 6, 129-140.	2.2	27
24	Strength of correlation between wildlife collision data and hunting bags varies among ungulate species and with management scale. European Journal of Wildlife Research, 2020, 66, 1.	0.7	3
25	Floristic evidence for alternative biome states in tropical Africa. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 28183-28190.	3.3	41
26	Animal body size distribution influences the ratios of nutrients supplied to plants. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 22256-22263.	3.3	35
27	European bison conservation cannot afford to ignore alternative hypotheses: a commentary on Perzanowski <i>et al</i> . (2019). Animal Conservation, 2020, 23, 479-481.	1.5	7
28	Predation risk constrains herbivores' adaptive capacity to warming. Nature Ecology and Evolution, 2020, 4, 1069-1074.	3.4	30
29	The Protected Area Paradox and refugee species: The giant panda and baselines shifted towards conserving species in marginal habitats. Conservation Science and Practice, 2020, 2, e203.	0.9	19
30	Fifty years of European ungulate dietary studies: a synthesis. Oikos, 2020, 129, 1668-1680.	1.2	54
31	Opportunistic feeding by lions: non-preferred prey comprise an important part of lion diets in a habitat where preferred prey are abundant. Mammal Research, 2020, 65, 235-243.	0.6	12
32	Varied diets, including broadleaved forage, are important for a large herbivore species inhabiting highly modified landscapes. Scientific Reports, 2020, 10, 1904.	1.6	16
33	Large-scale spatial variation of chronic stress signals in moose. PLoS ONE, 2020, 15, e0225990.	1.1	7
34	From reindeer to rhino: Reflections on â€~Climate change mitigation and adaptation benefits of wilder rangelands'. South African Journal of Science, 2020, 116, .	0.3	0
35	The blame game: Using eDNA to identify species-specific tree browsing by red deer (Cervus elaphus) and roe deer (Capreolus capreolus) in a temperate forest. Forest Ecology and Management, 2019, 451, 117483.	1.4	14
36	Simulated elephant-induced habitat changes can create dynamic landscapes of fear. Biological Conservation, 2019, 237, 267-279.	1.9	10

#	Article	IF	CITATIONS
37	Large herbivore assemblages in a changing climate: incorporating water dependence and thermoregulation. Ecology Letters, 2019, 22, 1536-1546.	3.0	46
38	Framing pictures: A conceptual framework to identify and correct for biases in detection probability of camera traps enabling multiâ€species comparison. Ecology and Evolution, 2019, 9, 2320-2336.	0.8	83
39	Keep the wolf from the door: How to conserve wolves in Europe's human-dominated landscapes?. Biological Conservation, 2019, 235, 102-111.	1.9	49
40	Doubting dung: eDNA reveals high rates of misidentification in diverse European ungulate communities. European Journal of Wildlife Research, 2019, 65, 1.	0.7	27
41	Elephant effects on treefall and logfall highlight the absence of megaherbivores in coarse woody debris conceptual frameworks. Forest Ecology and Management, 2019, 438, 57-62.	1.4	3
42	Top–down limits on prey populations may be more severe in larger prey species, despite having fewer predators. Ecography, 2019, 42, 1115-1123.	2.1	26
43	A sharp floristic discontinuity revealed by the biogeographic regionalization of African savannas. Journal of Biogeography, 2019, 46, 454-465.	1.4	17
44	Comparing the impact of a grazing regime with European bison versus one with free-ranging cattle on coastal dune vegetation in the Netherlands. Mammal Research, 2018, 63, 455-466.	0.6	9
45	Does wolf presence reduce moose browsing intensity in young forest plantations?. Ecography, 2018, 41, 1776-1787.	2.1	29
46	Pictures or pellets? Comparing camera trapping and dung counts as methods for estimating population densities of ungulates. Remote Sensing in Ecology and Conservation, 2018, 4, 173-183.	2.2	53
47	Rewilding Europe's large grazer community: how functionally diverse are the diets of European bison, cattle, and horses?. Restoration Ecology, 2018, 26, 891-899.	1.4	53
48	Trophic rewilding as a climate change mitigation strategy?. Philosophical Transactions of the Royal Society B: Biological Sciences, 2018, 373, 20170440.	1.8	72
49	Megaherbivores Modify Trophic Cascades Triggered by Fear of Predation in an African Savanna Ecosystem. Current Biology, 2018, 28, 2493-2499.e3.	1.8	74
50	Interactions between ungulates, forests, and supplementary feeding: the role of nutritional balancing in determining outcomes. Mammal Research, 2017, 62, 1-7.	0.6	28
51	Evaluating the efficacy of invasive plant control in response to ecological factors. South African Journal of Botany, 2017, 109, 203-213.	1.2	12
52	Contrasting impacts of an alien invasive shrub on mammalian savanna herbivores revealed on a landscape scale. Diversity and Distributions, 2017, 23, 656-666.	1.9	11
53	Brown world forests: increased ungulate browsing keeps temperate trees in recruitment bottlenecks in resource hotspots. New Phytologist, 2017, 214, 158-168.	3.5	47
54	The Abiotic Template for the Hluhluwe-iMfolozi Park's Landscape Heterogeneity. , 2017, , 33-55.		12

#	Article	IF	CITATIONS
55	Temporal Changes in the Large Herbivore Fauna of Hluhluwe-iMfolozi Park. , 2017, , 80-108.		11
56	Megaherbivores, Competition and Coexistence within the Large Herbivore Guild. , 2017, , 111-134.		6
57	The Functional Ecology of Grazing Lawns: How Grazers, Termites, People, and Fire Shape HiP's Savanna Grassland Mosaic. , 2017, , 135-160.		10
58	Woody Plant Traits and Life-History Strategies across Disturbance Gradients and Biome Boundaries in the Hluhluwe-iMfolozi Park. , 2017, , 189-210.		6
59	Interactions between Fire and Ecosystem Processes. , 2017, , 233-262.		14
60	Reassembly of the Large Predator Guild into Hluhluwe-iMfolozi Park. , 2017, , 286-310.		15
61	Elephant Management in the Hluhluwe-iMfolozi Park. , 2017, , 336-357.		4
62	Successful Control of the Invasive Shrub <i>Chromolaena odorata</i> in Hluhluwe-iMfolozi Park. , 2017, , 358-382.		9
63	Smaller ungulates are first to incur imminent extirpation from an African protected area. Biological Conservation, 2017, 216, 108-114.	1.9	8
64	Determinants of patchiness of woody vegetation in an African savanna. Journal of Vegetation Science, 2017, 28, 93-104.	1.1	10
65	Differentâ€sized grazers have distinctive effects on plantÂfunctional composition of an <scp>A</scp> frican savannah. Journal of Ecology, 2016, 104, 864-875.	1.9	30
66	Phantoms of the forest: legacy risk effects of a regionally extinct large carnivore. Ecology and Evolution, 2016, 6, 791-799.	0.8	23
67	Mammalian herbivores, grass height and rainfall drive termite activity at different spatial scales in an African savanna. Biotropica, 2016, 48, 656-666.	0.8	8
68	Bottom-up and top-down forces shaping wooded ecosystems: lessons from a cross-biome comparison. , 2015, , 107-133.		3
69	Using eDNA to experimentally test ungulate browsing preferences. SpringerPlus, 2015, 4, 489.	1.2	12
70	DNA left on browsed twigs uncovers bite-scale resource use patterns in European ungulates. Oecologia, 2015, 178, 275-284.	0.9	40
71	Legacy Effects of Different Land-Use Histories Interact with Current Grazing Patterns to Determine Grazing Lawn Soil Properties. Ecosystems, 2015, 18, 720-733.	1.6	19
72	Restoration of a megaherbivore: landscapeâ€level impacts of white rhinoceros in <scp>K</scp> ruger <scp>N</scp> ational <scp>P</scp> ark, <scp>S</scp> outh <scp>A</scp> frica. Journal of Ecology, 2014, 102, 566-575.	1.9	71

JORIS P G M CROMSIGT

#	Article	IF	CITATIONS
73	Fatal attraction: vegetation responses to nutrient inputs attract herbivores to infectious anthrax carcass sites. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20141785.	1.2	89
74	Hunting for fear: innovating management of human–wildlife conflicts. Journal of Applied Ecology, 2013, 50, 544-549.	1.9	162
75	Coarse woody debris facilitates oak recruitment in BiaÅ,owieża Primeval Forest, Poland. Forest Ecology and Management, 2012, 284, 133-141.	1.4	35
76	The difficulty of using species distribution modelling for the conservation of refugee species – the example of European bison. Diversity and Distributions, 2012, 18, 1253-1257.	1.9	44
77	Conservation implications of the refugee species concept and the European bison: king of the forest or refugee in a marginal habitat?. Ecography, 2012, 35, 519-529.	2.1	153
78	Managing invasions at the cost of native habitat? An experimental test of the impact of fire on the invasion of Chromolaena odorata in a South African savanna. Biological Invasions, 2012, 14, 607-618.	1.2	39
79	Effects of Erosion from Mounds of Different Termite Genera on Distinct Functional Grassland Types in an African Savannah. Ecosystems, 2012, 15, 128-139.	1.6	40
80	Revisiting the browsing lawn concept: Evolutionary Interactions or pruning herbivores?. Perspectives in Plant Ecology, Evolution and Systematics, 2011, 13, 207-215.	1.1	72
81	Bottomâ€up versus topâ€down control of tree regeneration in the BiaÅ,owieża Primeval Forest, Poland. Journal of Ecology, 2010, 98, 888-899.	1.9	124
82	Monitoring large herbivore diversity at different scales: comparing direct and indirect methods. Biodiversity and Conservation, 2009, 18, 1219-1231.	1.2	31
83	Habitat heterogeneity as a driver of ungulate diversity and distribution patterns: interaction of body mass and digestive strategy. Diversity and Distributions, 2009, 15, 513-522.	1.9	112
84	Do ungulates preferentially feed in forest gaps in European temperate forest?. Forest Ecology and Management, 2009, 258, 1528-1535.	1.4	170
85	Global decline in aggregated migrations of large terrestrial mammals. Endangered Species Research, 2009, 7, 55-76.	1.2	335
86	Dynamics of grazing lawn formation: an experimental test of the role of scaleâ€dependent processes. Oikos, 2008, 117, 1444-1452.	1.2	83
87	RESOURCE PARTITIONING AMONG SAVANNA GRAZERS MEDIATED BY LOCAL HETEROGENEITY: AN EXPERIMENTAL APPROACH. Ecology, 2006, 87, 1532-1541.	1.5	94
88	Using models in the management of Black rhino populations. Ecological Modelling, 2002, 149, 203-211.	1.2	21
89	Anthropogenic Influences in Hluhluwe-iMfolozi Park: From Early Times to Recent Management. , 0, , 3-32.		1

20 Long-Term Vegetation Dynamics within the Hluhluwe iMfolozi Park. , 0, , 56-79.

3

#	Article	IF	CITATIONS
91	Rhino Management Challenges: Spatial and Social Ecology for Habitat and Population Management. , 0, , 265-285.		4
92	Conserving Africa's Mega-Diversity in the Anthropocene: The Hluhluwe-iMfolozi Park Story. , 0, , 383-396.		1