
Babak Saboury

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6526640/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	CD40 Agonists Alter Tumor Stroma and Show Efficacy Against Pancreatic Carcinoma in Mice and Humans. Science, 2011, 331, 1612-1616.	12.6	1,407
2	A Phase I Study of an Agonist CD40 Monoclonal Antibody (CP-870,893) in Combination with Gemcitabine in Patients with Advanced Pancreatic Ductal Adenocarcinoma. Clinical Cancer Research, 2013, 19, 6286-6295.	7.0	382
3	PET/MR Imaging: Technical Aspects and Potential Clinical Applications. Radiology, 2013, 267, 26-44.	7.3	199
4	Systemic and Vascular Inflammation in Patients With Moderate to Severe Psoriasis as Measured by [18F]-Fluorodeoxyglucose Positron Emission Tomography –Computed Tomography (FDG-PET/CT). Archives of Dermatology, 2011, 147, 1031.	1.4	194
5	Direct comparison of fluorodeoxyglucose positron emission tomography and arterial spin labeling magnetic resonance imaging in Alzheimer's disease. Alzheimer's and Dementia, 2012, 8, 51-59.	0.8	149
6	Emerging role of radiolabeled nanoparticles as an effective diagnostic technique. EJNMMI Research, 2012, 2, 39.	2.5	120
7	A new dimension of FDG-PET interpretation: assessment of tumor biology. European Journal of Nuclear Medicine and Molecular Imaging, 2011, 38, 1158-1170.	6.4	86
8	Comparison of Chest Radiograph Interpretations by Artificial Intelligence Algorithm vs Radiology Residents. JAMA Network Open, 2020, 3, e2022779.	5.9	86
9	Detection and global quantification of cardiovascular molecular calcification by fluoro18-fluoride positron emission tomography/computed tomographya novel concept. Hellenic Journal of Nuclear Medicine, 2011, 14, 114-20.	0.3	85
10	Evolving role of molecular imaging with PET in detecting and characterizing heterogeneity of cancer tissue at the primary and metastatic sites, a plausible explanation for failed attempts to cure malignant disorders. European Journal of Nuclear Medicine and Molecular Imaging, 2011, 38, 987-991.	6.4	82
11	Body-wide hierarchical fuzzy modeling, recognition, and delineation of anatomy in medical images. Medical Image Analysis, 2014, 18, 752-771.	11.6	81
12	FDG PET for Diagnosing Infection in Hip and Knee Prostheses. Clinical Nuclear Medicine, 2014, 39, 609-615.	1.3	77
13	FDG PET/CT in Crohn's disease: correlation of quantitative FDG PET/CT parameters with clinical and endoscopic surrogate markers of disease activity. European Journal of Nuclear Medicine and Molecular Imaging, 2014, 41, 605-614.	6.4	65
14	Reinventing Radiology: Big Data and the Future of Medical Imaging. Journal of Thoracic Imaging, 2018, 33, 4-16.	1.5	63
15	Current Evidence Base of FDG-PET/CT Imaging in the Clinical Management of Malignant Pleural Mesothelioma: Emerging Significance of Image Segmentation and Global Disease Assessment. Molecular Imaging and Biology, 2011, 13, 801-811.	2.6	56
16	Erectile Dysfunction Severity as a Risk Predictor for Coronary Artery Disease. Journal of Sexual Medicine, 2009, 6, 3425-3432.	0.6	55
17	The Value of Radiologic Interventions and 18F-DOPA PET in Diagnosing and Localizing Focal Congenital Hyperinsulinism: Systematic Review and Meta-Analysis. Molecular Imaging and Biology, 2013, 15, 97-105.	2.6	55
18	Quantitative assessment of global lung inflammation following radiation therapy using FDG PET/CT: a pilot study. European Journal of Nuclear Medicine and Molecular Imaging, 2014, 41, 350-356.	6.4	54

#	Article	IF	CITATIONS
19	Quantification of Atherosclerotic Plaque Activity and Vascular Inflammation using [18-F] Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography (FDG-PET/CT). Journal of Visualized Experiments, 2012, , e3777.	0.3	46
20	A comparison of vascular inflammation in psoriasis, rheumatoid arthritis, and healthy subjects by FDG-PET/CT: a pilot study. American Journal of Cardiovascular Disease, 2013, 3, 273-8.	0.5	46
21	Clinical Utility of FDG–PET and PET/CT in Non-malignant Thoracic Disorders. Molecular Imaging and Biology, 2011, 13, 1051-1060.	2.6	44
22	Nuclear Medicine and Artificial Intelligence: Best Practices for Algorithm Development. Journal of Nuclear Medicine, 2022, 63, 500-510.	5.0	43
23	Feasibility and performance of novel software to quantify metabolically active volumes and 3D partial volume corrected SUV and metabolic volumetric products of spinal bone marrow metastases on 18F-FDG-PET/CT. Hellenic Journal of Nuclear Medicine, 2011, 14, 8-14.	0.3	43
24	Amyloid-β imaging with PET in Alzheimer's disease: is it feasible with current radiotracers and technologies?. European Journal of Nuclear Medicine and Molecular Imaging, 2012, 39, 202-208.	6.4	40
25	A Brief History of Al: How to Prevent Another Winter (A Critical Review). PET Clinics, 2021, 16, 449-469.	3.0	40
26	Comparison of Low Dose Performance of Photon-Counting and Energy Integrating CT. Academic Radiology, 2021, 28, 1754-1760.	2.5	33
27	Parathyroid Imaging: Past, Present, and Future. Frontiers in Endocrinology, 2021, 12, 760419.	3.5	33
28	Application of Partial Volume Effect Correction and 4D PET in the Quantification of FDG Avid Lung Lesions. Molecular Imaging and Biology, 2015, 17, 140-148.	2.6	32
29	Al-Based Detection, Classification and Prediction/Prognosis in Medical Imaging. PET Clinics, 2022, 17, 183-212.	3.0	31
30	Delayed time-point 18F-FDG PET CT imaging enhances assessment of atherosclerotic plaque inflammation. Nuclear Medicine Communications, 2013, 34, 860-867.	1.1	30
31	The effect of breathing irregularities on quantitative accuracy of respiratory gated PET/CT. Medical Physics, 2012, 39, 7390-7397.	3.0	29
32	Adverse Functional Effects of Chemotherapy on Whole-Brain Metabolism. Clinical Nuclear Medicine, 2014, 39, e35-e39.	1.3	26
33	Trustworthy Artificial Intelligence in Medical Imaging. PET Clinics, 2022, 17, 1-12.	3.0	26
34	A deep-learning based artificial intelligence (AI) approach for differentiation of clear cell renal cell carcinoma from oncocytoma on multi-phasic MRI. Clinical Imaging, 2021, 77, 291-298.	1.5	25
35	Objective Task-Based Evaluation of Artificial Intelligence-Based Medical Imaging Methods. PET Clinics, 2021, 16, 493-511.	3.0	25
36	Evaluation of Coronary Plaques and Stents with Conventional and Photon-counting CT: Benefits of High-Resolution Photon-counting CT. Radiology: Cardiothoracic Imaging, 2021, 3, e210102.	2.5	25

#	Article	IF	CITATIONS
37	Aortic vascular inflammation in psoriasis is associated with HDL particle size and concentration: a pilot study. American Journal of Cardiovascular Disease, 2012, 2, 285-92.	0.5	25
38	Advantages and Applications of Total-Body PET Scanning. Diagnostics, 2022, 12, 426.	2.6	24
39	Toward High-Throughput Artificial Intelligence-Based Segmentation in Oncological PET Imaging. PET Clinics, 2021, 16, 577-596.	3.0	23
40	Artificial Intelligence in Lymphoma PET Imaging. PET Clinics, 2022, 17, 145-174.	3.0	23
41	Evolving role of FDG PET imaging in assessing joint disorders: a systematic review. European Journal of Nuclear Medicine and Molecular Imaging, 2011, 38, 1939-1955.	6.4	22
42	Increased 18F-FDG uptake suggests synovial inflammatory reaction with osteoarthritis. Nuclear Medicine Communications, 2015, 36, 1215-1219.	1.1	21
43	Quantification of aging effects upon global knee inflammation by 18F-FDG-PET. Nuclear Medicine Communications, 2016, 37, 254-258.	1.1	21
44	In vivo quantification of pulmonary inflammation in relation to emphysema severity via partial volume corrected (18)F-FDG-PET using computer-assisted analysis of diagnostic chest CT. Hellenic Journal of Nuclear Medicine, 2013, 16, 12-8.	0.3	20
45	Comparing Semiquantitative and Qualitative Methods of Vascular ¹⁸ F-FDG PET Activity Measurement in Large-Vessel Vasculitis. Journal of Nuclear Medicine, 2022, 63, 280-286.	5.0	18
46	Reinventing Molecular Imaging with Total-Body PET, Part I. PET Clinics, 2020, 15, 427-438.	3.0	18
47	Suboptimal and inadequate quantification: an alarming crisis in medical applications of PET. European Journal of Nuclear Medicine and Molecular Imaging, 2011, 38, 1381-1382.	6.4	17
48	Reinventing Molecular Imaging with Total-Body PET, Part II. PET Clinics, 2020, 15, 463-475.	3.0	17
49	Quantitative assessment of global hepatic glycolysis in patients with cirrhosis and normal controls using 18F-FDG-PET/CT: a pilot study. Annals of Nuclear Medicine, 2014, 28, 53-59.	2.2	16
50	Fuzzy object modeling. Proceedings of SPIE, 2011, , .	0.8	15
51	Potential and Most Relevant Applications of Total Body PET/CT Imaging. Clinical Nuclear Medicine, 2022, 47, 43-55.	1.3	15
52	Beta-cell Imaging: Opportunities and Limitations. Journal of Nuclear Medicine, 2011, 52, 493.1-493.	5.0	14
53	Assessment of Global Cardiac Uptake of Radiolabeled Iron Oxide Nanoparticles in Apolipoprotein-E-Deficient Mice: Implications for Imaging Cardiovascular Inflammation. Molecular Imaging and Biology, 2013, 16, 330-9.	2.6	14
54	Tumor Response to Radiopharmaceutical Therapies: The Knowns and the Unknowns. Journal of Nuclear Medicine, 2021, 62, 12S-22S.	5.0	14

#	Article	IF	CITATIONS
55	Artificial Intelligence in Medical Imaging and its Impact on the Rare Disease Community: Threats, Challenges and Opportunities. PET Clinics, 2022, 17, 13-29.	3.0	13

Sporadic Primary Pheochromocytoma: A Prospective Intraindividual Comparison of Six Imaging Tests
(CT, MRI, and PET/CT Using ⁶⁸Ga-DOTATATE, FDG, ¹⁸F-FDOPA, and) Tj ETQq0 0 0 rgBT /Øxerlock 102 Tf 50 69

57	Alavi–Carlsen Calcification Score (ACCS): A Simple Measure of Global Cardiac Atherosclerosis Burden. Diagnostics, 2021, 11, 1421.	2.6	12
58	Role of Artificial Intelligence in Theranostics. PET Clinics, 2021, 16, 627-641.	3.0	12
59	Defining the role of modern imaging techniques in assessing lymph nodes for metastasis in cancer: evolving contribution of PET in this setting. European Journal of Nuclear Medicine and Molecular Imaging, 2011, 38, 1353-1366.	6.4	11
60	Automatic anatomy recognition via fuzzy object models. Proceedings of SPIE, 2012, , .	0.8	11
61	Feasibility of estimation of brain volume and 2-deoxy-2-(18)F-fluoro-D-glucose metabolism using a novel automated image analysis method: application in Alzheimer's disease. Hellenic Journal of Nuclear Medicine, 2012, 15, 190-6.	0.3	10
62	Relation Between Popliteal-Tibial Artery Atherosclerosis and Global Glycolytic Metabolism in the Affected Diabetic Foot. Journal of the American Podiatric Medical Association, 2012, 102, 240-246.	0.3	9
63	β-Cell Mass Imaging with DTBZ Positron Emission Tomography: Is it Possible?. Molecular Imaging and Biology, 2013, 15, 1-2.	2.6	9
64	Assessment of atherosclerosis in multiple myeloma and smoldering myeloma patients using 18F- sodium fluoride PET/CT. Journal of Nuclear Cardiology, 2021, 28, 3044-3054.	2.1	9
65	Comment on: "FDG PET and PET/CT: EANM procedure guidelines for tumour PET imaging, version 1.0― European Journal of Nuclear Medicine and Molecular Imaging, 2010, 37, 1430-1431.	6.4	8
66	Detection and Quantification of Molecular Calcification by PET/Computed Tomography: A New Paradigm in Assessing Atherosclerosis. PET Clinics, 2011, 6, 409-415.	3.0	8
67	Prognostic Predictors of Visual Outcome in Open Globe Injury: Emphasis on Facial CT Findings. American Journal of Neuroradiology, 2017, 38, 1013-1018.	2.4	8
68	18F-FDG-PET/CT in measuring volume and global metabolic activity of thigh muscles. Nuclear Medicine Communications, 2020, 41, 162-168.	1.1	8
69	"Global―cardiac atherosclerotic burden assessed by artificial intelligence-based versus manual segmentation in 18F-sodium fluoride PET/CT scans: Head-to-head comparison. Journal of Nuclear Cardiology, 2022, 29, 2531-2539.	2.1	8
70	Imaging the Infected Heart. Science Translational Medicine, 2011, 3, 99fs3.	12.4	7
71	Comment on: "Tumor Aggressiveness and Patient Outcome in Cancer of the Pancreas Assessed by Dynamic 18F-FDG PET/CT― Journal of Nuclear Medicine, 2014, 55, 350-351.	5.0	7
72	Finding the sweet spot for metformin in 18F-FDC-PET. Nuclear Medicine Communications, 2017, 38, 875-880.	1.1	7

#	Article	IF	CITATIONS
73	Feature analysis of ultrasound elastography image for quantitative assessment of cutaneous carcinoma. Skin Research and Technology, 2018, 24, 242-247.	1.6	7
74	Quantification of global lung inflammation using volumetric 18F-FDG PET/CT parameters in locally advanced non-small-cell lung cancer patients treated with concurrent chemoradiotherapy. Nuclear Medicine Communications, 2019, 40, 618-625.	1.1	7
75	PET/MR Imaging in Musculoskeletal Precision Imaging - Third wave after X-Ray and MR. PET Clinics, 2020, 15, 521-534.	3.0	7
76	Artificial Intelligence and Positron Emission Tomography Imaging Workflow. PET Clinics, 2022, 17, 31-39.	3.0	7
77	Fuzzy model-based body-wide anatomy recognition in medical images. , 2013, , .		6
78	Quantitative normal thoracic anatomy at CT. Computerized Medical Imaging and Graphics, 2016, 51, 1-10.	5.8	6
79	Future Directions in Artificial Intelligence. Radiologic Clinics of North America, 2021, 59, 1085-1095.	1.8	6
80	Artificial Intelligence in Vascular-PET. PET Clinics, 2022, 17, 95-113.	3.0	6
81	Potential Applications of PET/CT/MR Imaging in Inflammatory Diseases. PET Clinics, 2020, 15, 547-558.	3.0	5
82	PET and AI Trajectories Finally Coming into Alignment. PET Clinics, 2021, 16, xv-xvi.	3.0	5
83	Equitable Implementation of Artificial Intelligence in Medical Imaging: What Can be Learned from Implementation Science?. PET Clinics, 2021, 16, 643-653.	3.0	5
84	Potential Applications of PET Scans, CT Scans, and MR Imaging in Inflammatory Diseases. PET Clinics, 2020, 15, 559-576.	3.0	4
85	18Fluorodeoxyglucose-positron emission tomography/computed tomography for differentiation of renal tumors in hereditary kidney cancer syndromes. Abdominal Radiology, 2021, 46, 3301-3308.	2.1	4
86	Artificial Intelligence in PET. PET Clinics, 2021, 16, 483-492.	3.0	4
87	Immune Effector Cell-Associated Neurotoxicity Syndrome (ICANS) after CD19-Directed Chimeric Antigen Receptor T-Cell Therapy (CAR-T) for Large B-Cell Lymphoma: Predictive Biomarkers and Clinical Outcomes. Blood, 2019, 134, 3239-3239.	1.4	4
88	Applications of Artificial Intelligence in 18F-Sodium Fluoride Positron Emission Tomography/Computed Tomography. PET Clinics, 2022, 17, 115-135.	3.0	4
89	Promising Roles of PET in Management of Arthroplasty-Associated Infection. PET Clinics, 2012, 7, 139-150.	3.0	3
90	Role of FDG PET/CT in investigating the mechanisms underlying atherosclerotic plaque formation and evolution. Revista Espanola De Medicina Nuclear E Imagen Molecular, 2013, 32, 246-252.	0.0	3

#	Article	IF	CITATIONS
91	A Pilot Trial to Examine the Effect of High-Dose Niacin on Arterial Wall Inflammation Using Fluorodeoxyglucose Positron Emission Tomography. Academic Radiology, 2015, 22, 600-609.	2.5	3
92	Computer-Aided Reporting of Chest Radiographs: Efficient and Effective Screening in the Value-Based Imaging Era. Journal of Digital Imaging, 2017, 30, 589-594.	2.9	3
93	Increased Cortical Glycolysis Following CD19 CART Therapy: A Radiographic Surrogate for an Altered Blood-Brain Barrier. Blood, 2019, 134, 4454-4454.	1.4	3
94	Evidence-Based Artificial Intelligence in Medical Imaging. PET Clinics, 2022, 17, 51-55.	3.0	3
95	Longitudinal Characterization of Vascular Inflammation and Disease Activity in Takayasu Arteritis and Giant Cell Arteritis: A <scp>Singleâ€Center</scp> Prospective Study. Arthritis Care and Research, 2023, 75, 1362-1370.	3.4	3
96	Access to Imaging Technology in Global Health. , 2019, , 15-33.		2
97	Early imaging biomarker assessment to predict long-term responses for large B-cell lymphoma (LBCL) after CAR-T therapy Journal of Clinical Oncology, 2019, 37, 7560-7560.	1.6	2
98	Role of Global Disease Assessment by Combined PET-CT-MR Imaging in Examining Cardiovascular Disease. PET Clinics, 2011, 6, 421-429.	3.0	1
99	Hybrid PET Imaging in Neurologic Disease: PET/MRI Rather than PET/CT. Current Medical Imaging, 2011, 7, 193-201.	0.8	1
100	The Future of PET-MRI Beyond "PET Plus MRI― Advances in Clinical Radiology, 2020, 2, 165-190.	0.2	1
101	IDIOMS. Digital Government Research and Practice (DGOV), 2021, 2, 1-5.	1.7	1
102	Modern Quantitative Techniques for PET/CT/MR Hybrid Imaging. , 0, , .		1
103	Taming the Complexity: Using Artificial Intelligence in a Cross-Disciplinary Innovative Platform to Redefine Molecular Imaging and Radiopharmaceutical Therapy. PET Clinics, 2022, 17, xvii-xix.	3.0	1
104	Role of 18F-FDGÂPET/CT in management of adrenocortical carcinoma: a comprehensive review of the literature. Clinical and Translational Imaging, 0, , 1.	2.1	1
105	Liver Toxicity Versus Dose Volume Parameters of Normal Liver for Yttrium-90 Radioembolization of Hepatic Tumors. International Journal of Radiation Oncology Biology Physics, 2015, 93, E179.	0.8	0
106	Clinical Implementation of Novel 3-D In Vivo Dose Assessment Method for Yttrium-90 Radioembolization of Hepatic Lesions. International Journal of Radiation Oncology Biology Physics, 2015, 93, E139-E140.	0.8	0
107	WE-AB-204-02: Molecular-Imaging Based Assessment of Liver Complications for Yttrium-90 Microsphere Treatments: Can Existing NTCP Models Explain Clinical Outcomes?. Medical Physics, 2015, 42, 3659-3659.	3.0	0
108	Effect of transarterial chemoembolization prior to selective internal radiation therapy on yttrium-90 microsphere delivery in hepatocellular carcinoma patients Journal of Clinical Oncology, 2016, 34, 458-458.	1.6	0

#	Article	IF	CITATIONS
109	WE-AB-BRA-05: PET-Guided Delivery Quality Evaluation of Yttrium-90 Microsphere Radioembolizaton for Hepatocellular Carcinoma Patients: The Optimal Sequence of Radioembolizaton and Chemoembolization Treatments. Medical Physics, 2016, 43, 3792-3792.	3.0	0