Michael Bardo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6526473/publications.pdf Version: 2024-02-01

MICHAEL RADOO

#	Article	IF	CITATIONS
1	Autoradiographic localization of dopamine D1 and D2 receptors in rat nucleus accumbens: Resistance to differential rearing conditions. Neuroscience, 1991, 45, 281-290.	2.3	2,214
2	Conditioned place preference: what does it add to our preclinical understanding of drug reward?. Psychopharmacology, 2000, 153, 31-43.	3.1	1,057
3	Psychobiology of novelty seeking and drug seeking behavior. Behavioural Brain Research, 1996, 77, 23-43.	2.2	606
4	Conditioned place preference using opiate and stimulant drugs: A meta-analysis. Neuroscience and Biobehavioral Reviews, 1995, 19, 39-51.	6.1	390
5	Neuropharmacological Mechanisms of Drug Reward: Beyond Dopamine in the Nucleus Accumbens. Critical Reviews in Neurobiology, 1998, 12, 37-68.	3.1	366
6	Environmental enrichment decreases intravenous self-administration of amphetamine in female and male rats. Psychopharmacology, 2001, 155, 278-284.	3.1	245
7	Regional and temporal differences in real-time dopamine efflux in the nucleus accumbens during free-choice novelty. Brain Research, 1997, 776, 61-67.	2.2	228
8	Transient increases in catecholaminergic activity in medial prefrontal cortex and nucleus accumbens shell during novelty. Neuroscience, 1996, 76, 707-714.	2.3	163
9	Neurobehavioral effects of environmental enrichment and drug abuse vulnerability. Pharmacology Biochemistry and Behavior, 2009, 92, 377-382.	2.9	158
10	Environmental Enrichment Produces a Behavioral Phenotype Mediated by Low Cyclic Adenosine Monophosphate Response Element Binding (CREB) Activity in the Nucleus Accumbens. Biological Psychiatry, 2010, 67, 28-35.	1.3	152
11	Environmental enrichment decreases intravenous amphetamine self-administration in rats: dose-response functions for fixed- and progressive-ratio schedules. Psychopharmacology, 2002, 162, 373-378.	3.1	150
12	Locomotor and rewarding effects of amphetamine in enriched, social, and isolate reared rats. Pharmacology Biochemistry and Behavior, 1994, 48, 459-464.	2.9	149
13	The effect of environmental enrichment on amphetamine-stimulated locomotor activity, dopamine synthesis and dopamine release. Neuropharmacology, 1993, 32, 885-893.	4.1	145
14	Prefrontal cortex and drug abuse vulnerability: Translation to prevention and treatment interventions. Brain Research Reviews, 2011, 65, 124-149.	9.0	144
15	Environmental enrichment attenuates locomotor sensitization, but not in vitro dopamine release, induced by amphetamine. Pharmacology Biochemistry and Behavior, 1995, 51, 397-405.	2.9	142
16	Individual Differences and Social Influences on the Neurobehavioral Pharmacology of Abused Drugs. Pharmacological Reviews, 2013, 65, 255-290.	16.0	141
17	Individual differences in behavioral responses to novelty and amphetamine self-administration in male and female rats. Behavioural Pharmacology, 2001, 12, 267-275.	1.7	128
18	Environmental enrichment decreases cell surface expression of the dopamine transporter in rat medial prefrontal cortex. Journal of Neurochemistry, 2005, 93, 1434-1443.	3.9	119

#	Article	IF	CITATIONS
19	Serotonin, but not dopamine, metabolites are increased in selected brain regions of subordinate male rats in a colony environment. Brain Research, 1991, 568, 61-66.	2.2	114
20	Impulsive choice and environmental enrichment: Effects of d-amphetamine and methylphenidate. Behavioural Brain Research, 2008, 193, 48-54.	2.2	114
21	Nornicotine is self-administered intravenously by rats. Psychopharmacology, 1999, 146, 290-296.	3.1	109
22	Novelty seeking and drug use: Contribution of an animal model Experimental and Clinical Psychopharmacology, 2005, 13, 367-375.	1.8	106
23	Effect of bupropion on nicotine self-administration in rats. Psychopharmacology, 2003, 169, 1-9.	3.1	105
24	Reversal of cocaine onditioned place preference and mesocorticolimbic Zif268 expression by social interaction in rats. Addiction Biology, 2011, 16, 273-284.	2.6	104
25	Conditioned place preference with morphine: The effect of extinction training on the reinforcing CR. Pharmacology Biochemistry and Behavior, 1984, 21, 545-549.	2.9	102
26	Novelty-induced place preference behavior in rats: Effects of opiate and dopaminergic drugs. Pharmacology Biochemistry and Behavior, 1989, 32, 683-689.	2.9	101
27	Locomotion and conditioned place preference produced by acute intravenous amphetamine: role of dopamine receptors and individual differences in amphetamine self-administration. Psychopharmacology, 1999, 143, 39-46.	3.1	101
28	Novelty seeking, incentive salience and acquisition of cocaine self-administration in the rat. Behavioural Brain Research, 2011, 216, 159-165.	2.2	99
29	Effect of environmental enrichment on escalation of cocaine self-administration in rats. Psychopharmacology, 2011, 214, 557-566.	3.1	95
30	Impoverished Rearing Environment Alters Metabotropic Glutamate Receptor Expression and Function in the Prefrontal Cortex. Neuropsychopharmacology, 2004, 29, 1980-1987.	5.4	91
31	Lobeline attenuates d-methamphetamine self-administration in rats. Journal of Pharmacology and Experimental Therapeutics, 2001, 298, 172-9.	2.5	90
32	Conditioned increase in place preference by access to novel objects: antagonism by MK-801. Behavioural Brain Research, 1999, 99, 53-60.	2.2	89
33	Environmental enrichment decreases nicotine-induced hyperactivity in rats. Psychopharmacology, 2003, 170, 235-241.	3.1	89
34	Individual Differences in Novelty Seeking on the Playground Maze Predict Amphetamine Conditioned Place Preference. Pharmacology Biochemistry and Behavior, 1999, 63, 131-136.	2.9	83
35	Effects of environmental enrichment on extinction and reinstatement of amphetamine self-administration and sucrose-maintained responding. Behavioural Pharmacology, 2006, 17, 597-604.	1.7	83
36	Environmental enrichment enhances sensitization to GBR 12935-induced activity and decreases dopamine transporter function in the medial prefrontal cortex. Behavioural Brain Research, 2004, 148, 107-117.	2.2	77

#	Article	IF	CITATIONS
37	Effect of forebrain dopamine depletion on novelty-induced place preference behavior in rats. Pharmacology Biochemistry and Behavior, 1990, 36, 321-325.	2.9	76
38	Once weekly administration of nicotine produces long-lasting locomotor sensitization in rats via a nicotinic receptor-mediated mechanism. Psychopharmacology, 2001, 156, 469-476.	3.1	69
39	Concurrent choice for social interaction and amphetamine using conditioned place preference in rats: Effects of age and housing condition. Drug and Alcohol Dependence, 2013, 129, 240-246.	3.2	69
40	Does physical activity protect against drug abuse vulnerability?. Drug and Alcohol Dependence, 2015, 153, 3-13.	3.2	69
41	Single-trial conditioned place preference using intravenous morphine. Pharmacology Biochemistry and Behavior, 1986, 25, 1101-1105.	2.9	68
42	Changes in locomotion and dopamine neurotransmission following amphetamine, haloperidol, and exposure to novel environmental stimuli. Psychopharmacology, 1990, 101, 338-343.	3.1	64
43	Reboxetine: Attenuation of Intravenous Nicotine Self-Administration in Rats. Journal of Pharmacology and Experimental Therapeutics, 2002, 303, 664-672.	2.5	64
44	Differences in impulsivity on a delay-discounting task predict self-administration of a low unit dose of methylphenidate in rats. Behavioural Pharmacology, 2009, 20, 447-454.	1.7	64
45	Environmental enrichment decreases responding for visual novelty. Behavioural Processes, 2006, 73, 360-366.	1.1	63
46	Acute and chronic effects of nornicotine on locomotor activity in rats: altered response to nicotine. Psychopharmacology, 1999, 145, 442-451.	3.1	58
47	Individual differences in response to novelty, amphetamine-induced activity and drug discrimination in rats. Behavioural Pharmacology, 1997, 8, 113-23.	1.7	55
48	Lobelane decreases methamphetamine self-administration in rats. European Journal of Pharmacology, 2007, 571, 33-38.	3.5	54
49	Nicotinic receptor-based therapeutics and candidates for smoking cessation. Biochemical Pharmacology, 2009, 78, 732-743.	4.4	53
50	Environmental enrichment reduces attribution of incentive salience to a food-associated stimulus. Behavioural Brain Research, 2012, 226, 331-334.	2.2	52
51	The effect of novelty on amphetamine self-administration in rats classified as high and low responders. Psychopharmacology, 2004, 176, 129-138.	3.1	51
52	Lobeline attenuates locomotor stimulation induced by repeated nicotine administration in rats. Pharmacology Biochemistry and Behavior, 2003, 74, 279-286.	2.9	50
53	Effect of a novel nicotinic receptor antagonist, N,N′-dodecane-1,12-diyl-bis-3-picolinium dibromide, on nicotine self-administration and hyperactivity in rats. Psychopharmacology, 2006, 184, 426-434.	3.1	50
54	Role of dopamine Dâ,•and Dâ,, receptors in novelty-maintained place preference Experimental and Clinical Psychopharmacology, 1993, 1, 101-109.	1.8	48

#	Article	IF	CITATIONS
55	Individual differences in novelty-induced activity and the rewarding effects of novelty and amphetamine in rats. Behavioural Processes, 1998, 44, 1-9.	1.1	48
56	Lobeline does not serve as a reinforcer in rats. Psychopharmacology, 2003, 165, 397-404.	3.1	47
57	Social facilitation of d-amphetamine self-administration in rats Experimental and Clinical Psychopharmacology, 2011, 19, 409-419.	1.8	47
58	Extended access to amphetamine self-administration increases impulsive choice in a delay discounting task in rats. Psychopharmacology, 2009, 207, 391-400.	3.1	46
59	Differential Effects of Accumbens Core vs. Shell Lesions in a Rat Concurrent Conditioned Place Preference Paradigm for Cocaine vs. Social Interaction. PLoS ONE, 2011, 6, e26761.	2.5	46
60	Genetics of novelty seeking, amphetamine selfâ€administration and reinstatement using inbred rats. Genes, Brain and Behavior, 2010, 9, 790-798.	2.2	45
61	Nicotinic Receptor Antagonists as Treatments for Nicotine Abuse. Advances in Pharmacology, 2014, 69, 513-551.	2.0	44
62	Effect of Differential Rearing Environments on Morphine-induced Behaviors, Opioid Receptors and Dopamine Synthesis. Neuropharmacology, 1997, 36, 251-259.	4.1	42
63	The effects of a novel nicotinic receptor antagonist N,N-dodecane-1,12-diyl-bis-3-picolinium dibromide (bPiDDB) on acute and repeated nicotine-induced increases in extracellular dopamine in rat nucleus accumbens. Neuropharmacology, 2007, 52, 755-763.	4.1	42
64	Effect of environmental enrichment on methylphenidate-induced locomotion and dopamine transporter dynamics. Behavioural Brain Research, 2011, 219, 98-107.	2.2	42
65	Methylphenidate Enhances the Abuse-Related Behavioral Effects of Nicotine in Rats: Intravenous Self-Administration, Drug Discrimination, and Locomotor Cross-Sensitization. Neuropsychopharmacology, 2008, 33, 1137-1148.	5.4	41
66	Age and sex differences in the locomotor effect of repeated methylphenidate in rats classified as high or low novelty responders. Psychopharmacology, 2006, 188, 18-27.	3.1	40
67	Methylphenidate and fluphenazine, but not amphetamine, differentially affect impulsive choice in Spontaneously Hypertensive, Wistar–Kyoto and Sprague–Dawley rats. Brain Research, 2011, 1396, 45-53.	2.2	40
68	Effect of environmental enrichment on dopamine and serotonin transporters and glutamate neurotransmission in medial prefrontal and orbitofrontal cortex. Brain Research, 2015, 1599, 115-125.	2.2	40
69	Environmental-induced differences in corticosterone and glucocorticoid receptor blockade of amphetamine self-administration in rats. Psychopharmacology, 2011, 218, 293-301.	3.1	39
70	Morphine-conditioned analgesia using a taste cue: dissociation of taste aversion and analgesia. Psychopharmacology, 1994, 114, 269-274.	3.1	37
71	Individual Differences in Amphetamine Self-Administration: The Role of the Central Nucleus of the Amygdala. Neuropsychopharmacology, 2008, 33, 1149-1161.	5.4	37
72	<i>N,N</i> ′-Alkane-diyl- <i>bis</i> -3-picoliniums as Nicotinic Receptor Antagonists: Inhibition of Nicotine-Evoked Dopamine Release and Hyperactivity. Journal of Pharmacology and Experimental Therapeutics, 2008, 326, 563-576.	2.5	37

#	Article	IF	CITATIONS
73	Methylphenidate as a reinforcer for rats: Contingent delivery and intake escalation Experimental and Clinical Psychopharmacology, 2010, 18, 257-266.	1.8	36
74	Environmental enrichment during development decreases intravenous self-administration of methylphenidate at low unit doses in rats. Behavioural Pharmacology, 2012, 23, 650-657.	1.7	36
75	Neuropharmacology of the Interoceptive Stimulus Properties of Nicotine. Current Drug Abuse Reviews, 2009, 2, 243-255.	3.4	36
76	High impulsivity in rats predicts amphetamine conditioned place preference. Pharmacology Biochemistry and Behavior, 2012, 100, 370-376.	2.9	35
77	Role of medial prefrontal and orbitofrontal monoamine transporters and receptors in performance in an adjusting delay discounting procedure. Brain Research, 2014, 1574, 26-36.	2.2	35
78	Environmental enrichment increases amphetamine-induced glutamate neurotransmission in the nucleus accumbens: A neurochemical study. Brain Research, 2008, 1197, 40-46.	2.2	34
79	Environmental enrichment reduces methamphetamine cue-induced reinstatement but does not alter methamphetamine reward or VMAT2 function. Behavioural Brain Research, 2014, 270, 151-158.	2.2	34
80	Repeated quinpirole treatment: Locomotor activity, dopamine synthesis, and effects of selective dopamine antagonists. Synapse, 1995, 20, 209-216.	1.2	33
81	Exposure to novel environmental stimuli decreases amphetamine self-administration in rats Experimental and Clinical Psychopharmacology, 2001, 9, 372-379.	1.8	33
82	Critical needs in drug discovery for cessation of alcohol and nicotine polysubstance abuse. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2016, 65, 269-287.	4.8	33
83	Chronic naltrexone supersensitizes the reinforcing and locomotor-activating effects of morphine. Pharmacology Biochemistry and Behavior, 1987, 28, 267-273.	2.9	32
84	(â^')-Nornicotine Partially Substitutes for (+)-Amphetamine in a Drug Discrimination Paradigm in Rats. Pharmacology Biochemistry and Behavior, 1997, 58, 1083-1087.	2.9	32
85	Environmental enrichment enhances the stimulant effect of intravenous amphetamine: Search for a cellular mechanism in the nucleus accumbens. Cognitive, Affective and Behavioral Neuroscience, 1999, 27, 292-299.	1.3	32
86	A multivariate assessment of individual differences in sensation seeking and impulsivity as predictors of amphetamine self-administration and prefrontal dopamine function in rats Experimental and Clinical Psychopharmacology, 2011, 19, 275-284.	1.8	31
87	Nornicotine pretreatment decreases intravenous nicotine self-administration in rats. Psychopharmacology, 2000, 152, 289-294.	3.1	30
88	Contribution of dihydro-beta-erythroidine sensitive nicotinic acetylcholine receptors in the ventral tegmental area to cocaine-induced behavioral sensitization in rats. Behavioural Brain Research, 2006, 168, 120-126.	2.2	30
89	Nicotine selfâ€administration remodels perineuronal nets in ventral tegmental area and orbitofrontal cortex in adult male rats. Addiction Biology, 2017, 22, 1743-1755.	2.6	29
90	Contributory role for nornicotine in nicotine neuropharmacology: nornicotine-evoked [3H]dopamine overflow from rat nucleus accumbens slices11Abbreviations: DA, dopamine; and DHβE, dihydro-β-erythroidine Biochemical Pharmacology, 2001, 62, 1597-1603.	4.4	28

#	Article	IF	CITATIONS
91	The effect of a novel VMAT2 inhibitor, GZ-793A, on methamphetamine reward in rats. Psychopharmacology, 2012, 220, 395-403.	3.1	27
92	Performance and subjective effects of diazepam and d-amphetamine in high and low sensation seekers. Behavioural Pharmacology, 2009, 20, 505-517.	1.7	25
93	Tetrabenazine inhibition of monoamine uptake and methamphetamine behavioral effects: Locomotor activity, drug discrimination and self-administration. Neuropharmacology, 2011, 61, 849-856.	4.1	25
94	bPiDI: a novel selective α6β2* nicotinic receptor antagonist and preclinical candidate treatment for nicotine abuse. British Journal of Pharmacology, 2011, 163, 346-357.	5.4	25
95	Amphetamine self-administration and dopamine function: assessment of gene × environment interactions in Lewis and Fischer 344 rats. Psychopharmacology, 2015, 232, 2275-2285.	3.1	25
96	Adolescent methylphenidate treatment differentially alters adult impulsivity and hyperactivity in the Spontaneously Hypertensive Rat model of ADHD. Pharmacology Biochemistry and Behavior, 2016, 141, 66-77.	2.9	25
97	The effect of neurotoxic doses of methamphetamine on methamphetamine-conditioned place preference in rats. Psychopharmacology, 2003, 166, 249-257.	3.1	24
98	Individual differences in response to novelty predict prefrontal cortex dopamine transporter function and cell surface expression. European Journal of Neuroscience, 2007, 26, 717-728.	2.6	24
99	Role of serotonin transporter function in rat orbitofrontal cortex in impulsive choice. Behavioural Brain Research, 2015, 293, 134-142.	2.2	24
100	Effects of environmental enrichment on self-administration of the short-acting opioid remifentanil in male rats. Psychopharmacology, 2017, 234, 3499-3506.	3.1	24
101	Environmental enrichment and drug value: a behavioral economic analysis in male rats. Addiction Biology, 2019, 24, 65-75.	2.6	23
102	Effects of apomorphine on novelty-induced place preference behavior in rats. Pharmacology Biochemistry and Behavior, 1990, 37, 89-93.	2.9	22
103	Effect of amphetamine on response inhibition in rats showing high or low response to novelty. Pharmacology Biochemistry and Behavior, 2006, 85, 98-104.	2.9	22
104	The Novel Pyrrolidine Nor-Lobelane Analog UKCP-110 [<i>cis</i> -2,5-di-(2-phenethyl)-pyrrolidine hydrochloride] Inhibits VMAT2 Function, Methamphetamine-Evoked Dopamine Release, and Methamphetamine Self-Administration in Rats. Journal of Pharmacology and Experimental Therapeutics, 2010, 335, 841-851.	2.5	22
105	Escalation and reinstatement of fentanyl self-administration in male and female rats. Psychopharmacology, 2021, 238, 2261-2273.	3.1	22
106	Second-order conditioning detects unexpressed morphine-induced salt aversion. Learning and Behavior, 1996, 24, 221-229.	3.4	21
107	Regionâ€specific effects of <i>N</i> , <i>N</i> ′â€dodecaneâ€1,12â€diylâ€bisâ€3â€picolinium dibromide on nicotineâ€induced increase in extracellular dopamine <i>in vivo</i> . British Journal of Pharmacology, 2008, 153, 792-804.	5.4	21
108	Effect of early life social adversity on drug abuse vulnerability: Focus on corticotropin-releasing factor and oxytocin. Neuropharmacology, 2021, 191, 108567.	4.1	21

#	Article	IF	CITATIONS
109	Oral methylphenidate establishes a conditioned place preference in rats. Neuroscience Letters, 2011, 487, 293-296.	2.1	20
110	Rearing environment differentially modulates cocaine self-administration after opioid pretreatment: A behavioral economic analysis. Drug and Alcohol Dependence, 2016, 167, 89-94.	3.2	20
111	Ethanol and Nicotine: A Pharmacologic Balancing Act?. Alcoholism: Clinical and Experimental Research, 2002, 26, 1917-1918.	2.4	19
112	Dissociable roles of dopamine and serotonin transporter function in a rat model of negative urgency. Behavioural Brain Research, 2015, 291, 201-208.	2.2	19
113	Nicotine increases dopamine clearance in medial prefrontal cortex in rats raised in an enriched environment. Journal of Neurochemistry, 2007, 103, 071024001518005-???.	3.9	18
114	Effects of <scp>VMAT</scp> 2 inhibitors lobeline and <scp>GZ</scp> â€793A on methamphetamineâ€induced changes in dopamine release, metabolism and synthesis <i>in vivo</i> . Journal of Neurochemistry, 2013, 127, 187-198.	3.9	18
115	Individual differences in impulsive action and dopamine transporter function in rat orbitofrontal cortex. Neuroscience, 2016, 313, 122-129.	2.3	18
116	Individual differences in the effect of novel environmental stimuli prior to amphetamine self-administration in rats (Rattus norvegicus) Experimental and Clinical Psychopharmacology, 2006, 14, 389-401.	1.8	17
117	Monoamine-depleting doses of methamphetamine in enriched and isolated rats: consequences for subsequent methamphetamine-induced hyperactivity and reward. Behavioural Pharmacology, 2006, 17, 499-508.	1.7	17
118	Strain differences in self-administration of methylphenidate and sucrose pellets in a rat model of attention-deficit hyperactivity disorder. Behavioural Pharmacology, 2011, 22, 794-804.	1.7	17
119	meso-Transdiene Analogs Inhibit Vesicular Monoamine Transporter-2 Function and Methamphetamine-Evoked Dopamine Release. Journal of Pharmacology and Experimental Therapeutics, 2011, 336, 940-951.	2.5	16
120	Reinstatement of methamphetamine conditioned place preference in nicotine-sensitized rats. Behavioural Brain Research, 2012, 235, 158-165.	2.2	16
121	r-bPiDI, an α6β2* Nicotinic Receptor Antagonist, Decreases Nicotine-Evoked Dopamine Release and Nicotine Reinforcement. Neurochemical Research, 2015, 40, 2121-2130.	3.3	16
122	Social reinstatement: a rat model of peer-induced relapse. Psychopharmacology, 2018, 235, 3391-3400.	3.1	16
123	[³ H]Dopamine Uptake through the Dopamine and Norepinephrine Transporters is Decreased in the Prefrontal Cortex of Transgenic Mice Expressing HIV-1 Transactivator of Transcription Protein. Journal of Pharmacology and Experimental Therapeutics, 2020, 374, 241-251.	2.5	16
124	Opposite regulation of conditioned place preference and intravenous drug self-administration in rodent models: Motivational and non-motivational examples. Neuroscience and Biobehavioral Reviews, 2020, 116, 89-98.	6.1	16
125	Primed for addiction: A critical review of the role of microglia in the neurodevelopmental consequences of adolescent alcohol drinking. Alcoholism: Clinical and Experimental Research, 2021, 45, 1908-1926.	2.4	16
126	Chronic treatment with naltrexone enhances morphine-stimulated dopamine neurotransmission: Neurochemical and behavioral evidence. Neuropharmacology, 1988, 27, 1103-1109.	4.1	15

#	Article	IF	CITATIONS
127	Targeting nicotinic receptor antagonists as novel pharmacotherapies for tobacco dependence and relapse. Neuropsychopharmacology, 2009, 34, 244-246.	5.4	15
128	Nicotine and cocaine self-administration using a multiple schedule of intravenous drug and sucrose reinforcement in rats. Behavioural Pharmacology, 2010, 21, 182-193.	1.7	15
129	Pharmacological manipulation of glucocorticoid receptors differentially affects cocaine self-administration in environmentally enriched and isolated rats. Behavioural Brain Research, 2015, 283, 196-202.	2.2	15
130	Effects of intra-accumbal administration of dopamine and ionotropic glutamate receptor drugs on delay discounting performance in rats Behavioral Neuroscience, 2017, 131, 392-405.	1.2	15
131	Exposure to novel environmental stimuli decreases amphetamine self-administration in rats. Experimental and Clinical Psychopharmacology, 2001, 9, 372-9.	1.8	15
132	Effects of β-funaltrexamine and naloxonazine on single-trial morphine-conditioned place preference and locomotor activity. Pharmacology Biochemistry and Behavior, 2003, 74, 617-622.	2.9	14
133	Oral administration of GZ-793A, a VMAT2 inhibitor, decreases methamphetamine self-administration in rats. Pharmacology Biochemistry and Behavior, 2013, 112, 29-33.	2.9	14
134	Neurochemical correlates of behavioral sensitization following repeated apomorphine treatment: Assessment of the role of D1 dopamine receptor stimulation. Synapse, 1993, 14, 160-168.	1.2	13
135	Repeated nicotine administration robustly increases bPiDDB inhibitory potency at α6β2-containing nicotinic receptors mediating nicotine-evoked dopamine release. Biochemical Pharmacology, 2010, 80, 402-409.	4.4	13
136	Isolation rearing as a preclinical model of attention/deficit-hyperactivity disorder. Behavioural Brain Research, 2012, 234, 292-298.	2.2	13
137	The effect of VMAT2 inhibitor GZ-793A on the reinstatement of methamphetamine-seeking in rats. Psychopharmacology, 2012, 224, 255-262.	3.1	13
138	Sex differences in monoamines following amphetamine and social reward in adolescent rats Experimental and Clinical Psychopharmacology, 2015, 23, 197-205.	1.8	13
139	Changes in fentanyl demand following naltrexone, morphine, and buprenorphine in male rats. Drug and Alcohol Dependence, 2020, 207, 107804.	3.2	13
140	Effects of nornicotine enantiomers on intravenous S(â^')-nicotine self-administration and cardiovascular function in rats. Psychopharmacology, 2006, 190, 145-155.	3.1	12
141	Repeated cocaine experience facilitates sucrose-reinforced operant responding in enriched and isolated rats. Learning and Motivation, 2007, 38, 44-55.	1.2	12
142	Distinct effects of enriched environment on dopamine clearance in nucleus accumbens shell and core following systemic nicotine administration. Synapse, 2013, 67, 57-67.	1.2	12
143	Tobacco's minor alkaloids: Effects on place conditioning and nucleus accumbens dopamine release in adult and adolescent rats. European Journal of Pharmacology, 2017, 814, 196-206.	3.5	12
144	Effects of the nicotinic agonist varenicline, nicotinic antagonist r-bPiDI, and DAT inhibitor (R)-modafinil on co-use of ethanol and nicotine in female P rats. Psychopharmacology, 2018, 235, 1439-1453.	3.1	12

#	Article	IF	CITATIONS
145	An improved model of ethanol and nicotine co-use in female P rats: Effects of naltrexone, varenicline, and the selective nicotinic α6β2* antagonist r-bPiDI. Drug and Alcohol Dependence, 2018, 193, 154-161.	3.2	12
146	Effects of the glucocorticoid receptor antagonist PT150 on stress-induced fentanyl seeking in male and female rats. Psychopharmacology, 2021, 238, 2439-2447.	3.1	12
147	Morphine-conditioned changes in locomotor activity: Role of the conditioned stimulus Experimental and Clinical Psychopharmacology, 1998, 6, 131-138.	1.8	11
148	Targeting Reward-Relevant Nicotinic Receptors in the Discovery of Novel Pharmacotherapeutic Agents to Treat Tobacco Dependence. Nebraska Symposium on Motivation, 2008, 55, 31-63.	0.9	11
149	Effect of 6-hydroxydopamine or repeated amphetamine treatment on mesencephalic mRNA levels for AMPA glutamate receptor subunits in the rat. Neuroscience Letters, 2001, 302, 133-136.	2.1	10
150	Discovery of a novel nicotinic receptor antagonist for the treatment of nicotine addiction: 1-(3-Picolinium)-12-triethylammonium-dodecane dibromide (TMPD). Biochemical Pharmacology, 2007, 74, 1271-1282.	4.4	10
151	Nicotinic receptors differentially modulate the induction and expression of behavioral sensitization to methylphenidate in rats. Psychopharmacology, 2009, 204, 551-562.	3.1	10
152	Modified single prolonged stress reduces cocaine self-administration during acquisition regardless of rearing environment. Behavioural Brain Research, 2018, 338, 143-152.	2.2	10
153	Effects of ethanol, naltrexone, nicotine and varenicline in an ethanol and nicotine co-use model in Sprague-Dawley rats. Drug and Alcohol Dependence, 2020, 212, 107988.	3.2	10
154	Acquisition of a Fixed Ratio Schedule in Adult Male Rats Neonatally Exposed to Ethanol and/or Cocaine. Alcoholism: Clinical and Experimental Research, 1999, 23, 7-11.	2.4	8
155	The novel nicotinic receptor antagonist N,N′-dodecane-1,12-diyl-bis-3-picolinium dibromide decreases nicotine-induced dopamine metabolism in rat nucleus accumbens. European Journal of Pharmacology, 2008, 601, 103-105.	3.5	8
156	Emotion regulation and drug abuse: Implications for prevention and treatment. Drug and Alcohol Dependence, 2016, 163, S1-S2.	3.2	8
157	Reduction of Cocaine-Induced Locomotor Effects by Enriched Environment Is Associated with Cell-Specific Accumulation of ΔFosB in Striatal and Cortical Subregions. International Journal of Neuropsychopharmacology, 2017, 20, pyw097.	2.1	8
158	Morphine-conditioned changes in locomotor activity: Role of the conditioned stimulus Experimental and Clinical Psychopharmacology, 1998, 6, 131-138.	1.8	8
159	Effects of opioid antagonists on unconditioned and conditioned hyperactivity to morphine. Pharmacology Biochemistry and Behavior, 2002, 73, 611-622.	2.9	7
160	Effects of Social Isolation on Perineuronal Nets in the Amygdala Following a Reward Omission Task in Female Rats. Molecular Neurobiology, 2021, 58, 348-361.	4.0	7
161	Nicotine and opioid co-dependence: Findings from bench research to clinical trials. Neuroscience and Biobehavioral Reviews, 2022, 134, 104507.	6.1	7
162	Effect of the glucocorticoid receptor antagonist PT150 on acquisition and escalation of fentanyl self-administration following early-life stress Experimental and Clinical Psychopharmacology, 2023, 31, 362-369.	1.8	7

#	Article	IF	CITATIONS
163	Presence of a social peer enhances acquisition of remifentanil self-administration in male rats. Drug and Alcohol Dependence, 2020, 213, 108125.	3.2	6
164	Prevention of relapse to methamphetamine self-administration by environmental enrichment: involvement of glucocorticoid receptors. Psychopharmacology, 2021, , 1.	3.1	6
165	Corticosterone enhances N-methyl-d-aspartate receptor signaling to promote isolated ventral tegmental area activity in a reconstituted mesolimbic dopamine pathway. Brain Research Bulletin, 2016, 120, 159-165.	3.0	5
166	New Scaffold for Lead Compounds to Treat Methamphetamine Use Disorders. AAPS Journal, 2018, 20, 29.	4.4	5
167	Odor conditioning with morphine: Conditioned preference, aversion, and analgesia. Cognitive, Affective and Behavioral Neuroscience, 1993, 21, 215-220.	1.3	5
168	High-Risk Behavior during Adolescence: Comments on Part I. Annals of the New York Academy of Sciences, 2004, 1021, 59-60.	3.8	4
169	CZ-11608, a Vesicular Monoamine Transporter-2 Inhibitor, Decreases the Neurochemical and Behavioral Effects of Methamphetamine. Journal of Pharmacology and Experimental Therapeutics, 2019, 371, 526-543.	2.5	4
170	Effects of adolescent alcohol exposure via oral gavage on adult alcohol drinking and co-use of alcohol and nicotine in Sprague Dawley rats. Drug and Alcohol Dependence, 2022, 232, 109298.	3.2	4
171	On the Nature of the Intra-Administration Unconditioned Stimulus: Comment on McDonald and Siegel (2004) Experimental and Clinical Psychopharmacology, 2004, 12, 12-14.	1.8	3
172	Effect of a social peer on risky decision making in male Sprague Dawley rats Experimental and Clinical Psychopharmacology, 2020, 28, 26-31.	1.8	3
173	Using Preclinical Models to Understand the Neural Basis of Negative Urgency. , 2018, , 2-20.		2
174	Effects of methamphetamine isomers on d-methamphetamine self-administration and food-maintained responding in male rats. Psychopharmacology, 2019, 236, 3557-3565.	3.1	1
175	Methamphetamine. , 2010, , 1049-1061.		1
176	Ethanol and Nicotine: A Pharmacologic Balancing Act?. Alcoholism: Clinical and Experimental Research, 2002, 26, 1917-1918.	2.4	1
177	The Motivational Impact of Nicotine and Its Role in Tobacco Use: Final Comments and Priorities. Nebraska Symposium on Motivation, 2008, 55, 199-205.	0.9	1
178	Future Directions for Research on Inhibitory Control and Drug Abuse Prevention. , 2011, , 317-329.		0
179	Environmental Enrichment and Drug Action. , 2014, , 1-6.		0
180	On the nature of the conditioned stimulus: Comment on Leri and Stewart (2002) Experimental and Clinical Psychopharmacology, 2002, 10, 353-355.	1.8	0