
Irazú Contreras GarcÃ-a

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6526416/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Changes in Appetite Regulation-Related Signaling Pathways in the Brain of Mice Supplemented with Non-nutritive Sweeteners. Journal of Molecular Neuroscience, 2021, 71, 1144-1155.	1.1	1
2	The impact of nutritive and non-nutritive sweeteners on the central nervous system: preliminary study. Nutritional Neuroscience, 2021, , 1-10.	1.5	0
3	Changes in nutrient and calorie intake, adipose mass, triglycerides and TNF-α concentrations after non-caloric sweetener intake: A pilot study. International Journal for Vitamin and Nutrition Research, 2021, 91, 87-98.	0.6	4
4	A Multimodal Theranostic System Prepared from High-Density Lipoprotein Carrier of Doxorubicin and ¹⁷⁷ Lu. Journal of Biomedical Nanotechnology, 2021, 17, 2125-2141.	0.5	6
5	Endocannabinoid Receptors in the CNS: Potential Drug Targets for the Prevention and Treatment of Neurologic and Psychiatric Disorders. Current Neuropharmacology, 2020, 18, 769-787.	1.4	19
6	Expression of MHC-I and II by Microglia and Lymphocytes in the Brain of Diet-Restricted Mice. Journal of Nutritional Science and Vitaminology, 2019, 65, 132-141.	0.2	3
7	Nutritional Modulation of Immune and Central Nervous System Homeostasis: The Role of Diet in Development of Neuroinflammation and Neurological Disease. Nutrients, 2019, 11, 1076.	1.7	35
8	Alterations in adipocyte morphology and leucocyte infiltration in adipose tissue in mice supplemented with nonâ€nutritive sweeteners. FASEB Journal, 2019, 33, 721.4.	0.2	0
9	Changes in the expression of ERK, JNK and p38 in small intestine related to prolonged intake of commercial sweeteners and their relationship with periodontal state in BALB/c mice. FASEB Journal, 2019, 33, 478.1.	0.2	0
10	Leptin Signaling in the Control of Metabolism and Appetite: Lessons from Animal Models. Journal of Molecular Neuroscience, 2018, 66, 390-402.	1.1	32
11	Chronic Intake of Commercial Sweeteners Induces Changes in Feeding Behavior and Signaling Pathways Related to the Control of Appetite in BALB/c Mice. BioMed Research International, 2018, 2018, 1-15.	0.9	9
12	Alterations in MHCâ€II expression in gonadal adipose tissue CD14 + cells related to prolonged commercial sweetener intake. FASEB Journal, 2018, 32, lb372.	0.2	0
13	Alterations in attention and memory in people with normal body mass index related to frequent sucralose or sucrose intake. FASEB Journal, 2018, 32, lb450.	0.2	0
14	Leukocyte production of IFN-γ and TNF-α in 8- to 12-y-old children with low serum iron levels. Nutrition, 2016, 32, 546-552.	1.1	4
15	Impact of Leishmania mexicana Infection on Dendritic Cell Signaling and Functions. PLoS Neglected Tropical Diseases, 2014, 8, e3202.	1.3	41
16	Molecular mechanisms of cognitive impairment in iron deficiency: Alterations in brain-derived neurotrophic factor and Insulin-like growth factor expression and function in the central nervous system. Nutritional Neuroscience, 2014, 17, 193-206.	1.5	35
17	Impact of Neutrophil-Secreted Myeloid Related Proteins 8 and 14 (MRP 8/14) on Leishmaniasis Progression. PLoS Neglected Tropical Diseases, 2013, 7, e2461.	1.3	10
18	Host Cell Signalling and <i>Leishmania</i> Mechanisms of Evasion. Journal of Tropical Medicine, 2012, 2012, 1-14.	0.6	110

#	Article	IF	CITATIONS
19	Leishmania Repression of Host Translation through mTOR Cleavage Is Required for Parasite Survival and Infection. Cell Host and Microbe, 2011, 9, 331-341.	5.1	153
20	<i>In Vitro</i> Characterization of the Microglial Inflammatory Response to <i>Streptococcus suis</i> , an Important Emerging Zoonotic Agent of Meningitis. Infection and Immunity, 2010, 78, 5074-5085.	1.0	43
21	Leishmania-Induced Inactivation of the Macrophage Transcription Factor AP-1 Is Mediated by the Parasite Metalloprotease GP63. PLoS Pathogens, 2010, 6, e1001148.	2.1	126
22	Host-Pathogen Interactions of <i>Actinobacillus pleuropneumoniae</i> with Porcine Lung and Tracheal Epithelial Cells. Infection and Immunity, 2009, 77, 1426-1441.	1.0	101
23	<i>Leishmania</i> GP63 Alters Host Signaling Through Cleavage-Activated Protein Tyrosine Phosphatases. Science Signaling, 2009, 2, ra58.	1.6	170
24	A novel form of NFâ€̂₽B is induced by <i>Leishmania </i> infection: Involvement in macrophage gene expression. European Journal of Immunology, 2008, 38, 1071-1081.	1.6	112