Guotai Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6526409/publications.pdf Version: 2024-02-01

ΟΠΟΤΑΙ ΜΑΝΟ

#	Article	IF	CITATIONS
1	Semi-Supervised Segmentation of Radiation-Induced Pulmonary Fibrosis From Lung CT Scans With Multi-Scale Guided Dense Attention. IEEE Transactions on Medical Imaging, 2022, 41, 531-542.	8.9	35
2	SCPM-Net: An anchor-free 3D lung nodule detection network using sphere representation and center points matching. Medical Image Analysis, 2022, 75, 102287.	11.6	34
3	Multiview Video-Based 3-D Pose Estimation of Patients in Computer-Assisted Rehabilitation Environment (CAREN). IEEE Transactions on Human-Machine Systems, 2022, 52, 196-206.	3.5	4
4	Automatic delineation of gross tumor volume based on magnetic resonance imaging by performing a novel semi-supervised learning framework in nasopharyngeal carcinoma. International Journal of Radiation Oncology Biology Physics, 2022, , .	0.8	7
5	Monoexponential, biexponential and diffusion kurtosis MR imaging models: quantitative biomarkers in the diagnosis of placenta accreta spectrum disorders. BMC Pregnancy and Childbirth, 2022, 22, 349.	2.4	4
6	FPL-UDA: Filtered Pseudo Label-Based Unsupervised Cross-Modality Adaptation for Vestibular Schwannoma Segmentation. , 2022, , .		3
7	HMRNet: High and Multi-Resolution Network With Bidirectional Feature Calibration for Brain Structure Segmentation in Radiotherapy. IEEE Journal of Biomedical and Health Informatics, 2022, 26, 4519-4529.	6.3	2
8	Semi-supervised medical image segmentation via uncertainty rectified pyramid consistency. Medical Image Analysis, 2022, 80, 102517.	11.6	87
9	CA-Net: Comprehensive Attention Convolutional Neural Networks for Explainable Medical Image Segmentation. IEEE Transactions on Medical Imaging, 2021, 40, 699-711.	8.9	321
10	An artificial intelligence framework for automatic segmentation and volumetry of vestibular schwannomas from contrast-enhanced T1-weighted and high-resolution T2-weighted MRI. Journal of Neurosurgery, 2021, 134, 171-179.	1.6	60
11	Efficient Semi-supervised Gross Target Volume of Nasopharyngeal Carcinoma Segmentation via Uncertainty Rectified Pyramid Consistency. Lecture Notes in Computer Science, 2021, , 318-329.	1.3	84
12	Domain Composition and Attention forÂUnseen-Domain Generalizable Medical Image Segmentation. Lecture Notes in Computer Science, 2021, , 241-250.	1.3	10
13	Cascaded Coarse-to-Fine Neural Network for Brain Tumor Segmentation. Lecture Notes in Computer Science, 2021, , 458-469.	1.3	0
14	LCOV-NET: A Lightweight Neural Network For COVID-19 Pneumonia Lesion Segmentation From 3D CT Images. , 2021, , .		10
15	SS-CADA: A Semi-Supervised Cross-Anatomy Domain Adaptation for Coronary Artery Segmentation. , 2021, , .		7
16	A Novel Weakly Supervised Framework Based On Noisy-Label Learning For Medical Image Segmentation. , 2021, , .		3
17	Automatic segmentation of gross target volume of nasopharynx cancer using ensemble of multiscale deep neural networks with spatial attention. Neurocomputing, 2021, 438, 211-222.	5.9	15
18	Automatic segmentation of organs-at-risk from head-and-neck CT using separable convolutional neural network with hard-region-weighted loss. Neurocomputing, 2021, 442, 184-199.	5.9	18

GUOTAI WANG

#	Article	IF	CITATIONS
19	MIDeepSeg: Minimally interactive segmentation of unseen objects from medical images using deep learning. Medical Image Analysis, 2021, 72, 102102.	11.6	48
20	Annotation-Efficient Learning for Medical Image Segmentation Based on Noisy Pseudo Labels and Adversarial Learning. IEEE Transactions on Medical Imaging, 2021, 40, 2795-2807.	8.9	14
21	Comprehensive Importance-Based Selective Regularization for Continual Segmentation Across Multiple Sites. Lecture Notes in Computer Science, 2021, , 389-399.	1.3	8
22	Automatic segmentation of organsâ€atâ€risks of nasopharynx cancer and lung cancer by crossâ€layer attention fusion network with TELDâ€Loss. Medical Physics, 2021, 48, 6987-7002.	3.0	5
23	Segmentation of vestibular schwannoma from MRI, an open annotated dataset and baseline algorithm. Scientific Data, 2021, 8, 286.	5.3	35
24	A Denoising Self-supervised Approach for COVID-19 Pneumonia Lesion Segmentation with Limited Annotated CT Images. , 2021, 2021, 3705-3708.		0
25	An automated framework for localization, segmentation and super-resolution reconstruction of fetal brain MRI. NeuroImage, 2020, 206, 116324.	4.2	160
26	Weakly supervised vessel segmentation in X-ray angiograms by self-paced learning from noisy labels with suggestive annotation. Neurocomputing, 2020, 417, 114-127.	5.9	23
27	Automatic ischemic stroke lesion segmentation from computed tomography perfusion images by image synthesis and attention-based deep neural networks. Medical Image Analysis, 2020, 65, 101787.	11.6	48
28	A Noise-Robust Framework for Automatic Segmentation of COVID-19 Pneumonia Lesions From CT Images. IEEE Transactions on Medical Imaging, 2020, 39, 2653-2663.	8.9	323
29	Cascaded Global Context Convolutional Neural Network for Brain Tumor Segmentation. Lecture Notes in Computer Science, 2020, , 315-326.	1.3	7
30	Uncertainty-Guided Efficient Interactive Refinement of Fetal Brain Segmentation from Stacks of MRI Slices. Lecture Notes in Computer Science, 2020, , 279-288.	1.3	11
31	CPM-Net: A 3D Center-Points Matching Network for Pulmonary Nodule Detection in CT Scans. Lecture Notes in Computer Science, 2020, , 550-559.	1.3	13
32	Myocardial Edema and Scar Segmentation Using a Coarse-to-Fine Framework with Weighted Ensemble. Lecture Notes in Computer Science, 2020, , 49-59.	1.3	4
33	NAS-SCAM: Neural Architecture Search-Based Spatial and Channel Joint Attention Module for Nuclei Semantic Segmentation and Classification. Lecture Notes in Computer Science, 2020, , 263-272.	1.3	12
34	DeeplGeoS: A Deep Interactive Geodesic Framework for Medical Image Segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019, 41, 1559-1572.	13.9	269
35	Automatic Brain Tumor Segmentation Based on Cascaded Convolutional Neural Networks With Uncertainty Estimation. Frontiers in Computational Neuroscience, 2019, 13, 56.	2.1	142
36	Automatic Brain Tumor Segmentation Using Convolutional Neural Networks with Test-Time Augmentation. Lecture Notes in Computer Science, 2019, , 61-72.	1.3	57

GUOTAI WANG

#	Article	IF	CITATIONS
37	Aleatoric uncertainty estimation with test-time augmentation for medical image segmentation with convolutional neural networks. Neurocomputing, 2019, 338, 34-45.	5.9	322
38	DeepIGeoS-V2: Deep Interactive Segmentation of Multiple Organs from Head and Neck Images with Lightweight CNNs. Lecture Notes in Computer Science, 2019, , 61-69.	1.3	9
39	Automatic Segmentation of Vestibular Schwannoma from T2-Weighted MRI by Deep Spatial Attention with Hardness-Weighted Loss. Lecture Notes in Computer Science, 2019, , 264-272.	1.3	30
40	Automatic Brain Tumor Segmentation Using Cascaded Anisotropic Convolutional Neural Networks. Lecture Notes in Computer Science, 2018, , 178-190.	1.3	243
41	Interactive Medical Image Segmentation Using Deep Learning With Image-Specific Fine Tuning. IEEE Transactions on Medical Imaging, 2018, 37, 1562-1573.	8.9	541
42	NiftyNet: a deep-learning platform for medical imaging. Computer Methods and Programs in Biomedicine, 2018, 158, 113-122.	4.7	407
43	An Automated Localization, Segmentation and Reconstruction Framework for Fetal Brain MRI. Lecture Notes in Computer Science, 2018, , 313-320.	1.3	26
44	Vesselness-constrained robust PCA for vessel enhancement in x-ray coronary angiograms. Physics in Medicine and Biology, 2018, 63, 155019.	3.0	5
45	Weakly-supervised convolutional neural networks for multimodal image registration. Medical Image Analysis, 2018, 49, 1-13.	11.6	280
46	On the Compactness, Efficiency, and Representation of 3D Convolutional Networks: Brain Parcellation as a Pretext Task. Lecture Notes in Computer Science, 2017, , 348-360.	1.3	202
47	Slic-Seg: A minimally interactive segmentation of the placenta from sparse and motion-corrupted fetal MRI in multiple views. Medical Image Analysis, 2016, 34, 137-147.	11.6	56
48	Dynamically Balanced Online Random Forests for Interactive Scribble-Based Segmentation. Lecture Notes in Computer Science, 2016, , 352-360.	1.3	5
49	A homotopy-based sparse representation for fast and accurate shape prior modeling in liver surgical planning. Medical Image Analysis, 2015, 19, 176-186.	11.6	40
50	Slic-Seg: Slice-by-Slice Segmentation Propagation of the Placenta in Fetal MRI Using One-Plane Scribbles and Online Learning. Lecture Notes in Computer Science, 2015, , 29-37.	1.3	15
51	Myocardium segmentation combining T2 and DE MRI using Multi-Component Bivariate Gaussian mixture model. , 2014, , .		2
52	Scalable sparse shape composition and its application to liver surgical planning. , 2014, , .		1
53	A new segmentation framework based on sparse shape composition in liver surgery planning system. Medical Physics, 2013, 40, 051913.	3.0	28
54	Segmentation using Sparse Shape Composition and minimally supervised method in liver surgery planning system. , 2013, 2013, 6075-8.		0