Nathalie Job

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6526319/publications.pdf

Version: 2024-02-01

28 papers	1,621 citations	18 h-index	454955 30 g-index
30 all docs	30 docs citations	30 times ranked	1630 citing authors

#	Article	IF	CITATIONS
1	A practical method to characterize proton exchange membrane fuel cell catalyst layer topography: Application to two coating techniques and two carbon supports. Thin Solid Films, 2020, 695, 137751.	1.8	7
2	ZnO/Carbon xerogel photocatalysts by low-pressure plasma treatment, the role of the carbon substrate and its plasma functionalization. Journal of Colloid and Interface Science, 2020, 570, 312-321.	9.4	25
3	Insights on palladium decorated nitrogen-doped carbon xerogels for the hydrogen production from formic acid. Catalysis Today, 2019, 324, 90-96.	4.4	40
4	Carbon Gels for Electrochemical Applications. Advances in Sol-gel Derived Materials and Technologies, 2019, , 149-189.	0.2	1
5	Defective Pt–Ni/graphene nanomaterials by simultaneous or sequential treatments of organometallic precursors by lowâ€pressure oxygen plasma. Plasma Processes and Polymers, 2019, 16, 1800203.	3.0	8
6	A Review on Recent Developments and Prospects for the Oxygen Reduction Reaction on Hollow Ptâ€alloy Nanoparticles. ChemPhysChem, 2018, 19, 1552-1567.	2.1	64
7	Streamlining of the synthesis process of Pt/carbon xerogel electrocatalysts with high Pt loading for the oxygen reduction reaction in proton exchange membrane fuel cells applications. Applied Catalysis B: Environmental, 2018, 225, 364-378.	20.2	26
8	Low-Pressure Plasma Synthesis of Ni/C Nanocatalysts from Solid Precursors: Influence of the Plasma Chemistry on the Morphology and Chemical State. ACS Applied Nano Materials, 2018, 1, 265-273.	5 . 0	10
9	Porous Hollow PtNi/C Electrocatalysts: Carbon Support Considerations To Meet Performance and Stability Requirements. ACS Catalysis, 2018, 8, 893-903.	11.2	67
10	Effect of nitrogen doping on the pore texture of carbon xerogels based on resorcinol-melamine-formaldehyde precursors. Microporous and Mesoporous Materials, 2018, 256, 190-198.	4.4	27
11	Elucidating the Mechanisms Driving the Aging of Porous Hollow PtNi/C Nanoparticles by Means of CO _{ads} Stripping. ACS Applied Materials & Interfaces, 2017, 9, 25298-25307.	8.0	19
12	Structure–Activity Relationships for the Oxygen Reduction Reaction in Porous Hollow PtNi/C Nanoparticles. ChemElectroChem, 2016, 3, 1591-1600.	3.4	16
13	Design of Pt/Carbon Xerogel Catalysts for PEM Fuel Cells. Catalysts, 2015, 5, 40-57.	3.5	15
14	Influence of the textural parameters of resorcinol–formaldehyde dry polymers and carbon xerogels on particle sizes upon mechanical milling. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 471, 124-132.	4.7	20
15	Pt/C catalyst for PEM fuel cells: Control of Pt nanoparticles characteristics through a novel plasma deposition method. Applied Catalysis B: Environmental, 2014, 147, 453-463.	20.2	32
16	Effect of CO2 activation of carbon xerogels on the adsorption of methylene blue. Adsorption, 2012, 18, 199-211.	3.0	18
17	Preparation of highly loaded Pt/carbon xerogel catalysts for Proton Exchange Membrane fuel cells by the Strong Electrostatic Adsorption method. Catalysis Today, 2010, 150, 119-127.	4.4	51
18	Nanostructured Carbons as Platinum Catalyst Supports for Proton Exchange Membrane Fuel Cell Electrodes. Topics in Catalysis, 2009, 52, 2117-2122.	2.8	19

#	Article	IF	CITATION
19	Water desorption from resorcinol-formaldehyde hydrogels and adsorption in the resulting xerogels. Microporous and Mesoporous Materials, 2009, 117, 61-66.	4.4	7
20	Critical opalescence points to thermodynamic instability: relevance to small-angle X-ray scattering of resorcinol–formaldehyde gel formation at low pH. Journal of Applied Crystallography, 2008, 41, 663-668.	4.5	18
21	Carbon xerogels as catalyst supports for PEM fuel cell cathode. Energy Conversion and Management, 2008, 49, 2461-2470.	9.2	84
22	Rheological determination of the sol–gel transition during the aqueous synthesis of resorcinol-formaldehyde resins. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007, 293, 224-228.	4.7	38
23	Synthesis optimization of organic xerogels produced from convective air-drying of resorcinol–formaldehyde gels. Journal of Non-Crystalline Solids, 2006, 352, 24-34.	3.1	108
24	Non Intrusive Mercury Porosimetry: Pyrolysis of Resorcinol-Formaldehyde Xerogels. Particle and Particle Systems Characterization, 2006, 23, 72-81.	2.3	43
25	Carbon xerogels as catalyst supports: Study of mass transfer. AICHE Journal, 2006, 52, 2663-2676.	3.6	58
26	Carbon aerogels, cryogels and xerogels: Influence of the drying method on the textural properties of porous carbon materials. Carbon, 2005, 43, 2481-2494.	10.3	396
27	Hydrodechlorination of 1,2-dichloroethane on Pd–Ag catalysts supported on tailored texture carbon xerogels. Catalysis Today, 2005, 102-103, 234-241.	4.4	61
28	Porous carbon xerogels with texture tailored by pH control during sol–gel process. Carbon, 2004, 42, 619-628.	10.3	334