Kensuke Takechi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/652620/publications.pdf

Version: 2024-02-01

47 papers

3,987 citations

257450 24 h-index 243625 44 g-index

49 all docs

49 docs citations

49 times ranked

6092 citing authors

#	Article	IF	CITATIONS
1	Quantum Dot Solar Cells. Tuning Photoresponse through Size and Shape Control of CdSeâ^TiO ₂ Architecture. Journal of the American Chemical Society, 2008, 130, 4007-4015.	13.7	1,567
2	Avoiding short circuits from zinc metal dendrites in anode by backside-plating configuration. Nature Communications, 2016, 7, 11801.	12.8	286
3	A Li–O2/CO2 battery. Chemical Communications, 2011, 47, 3463.	4.1	263
4	Single-Walled Carbon Nanotube Scaffolds for Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2008, 112, 4776-4782.	3.1	225
5	Intrinsic Barrier to Electrochemically Decompose Li ₂ CO ₃ and LiOH. Journal of Physical Chemistry C, 2014, 118, 26591-26598.	3.1	162
6	A Highly Concentrated Catholyte Based on a Solvate Ionic Liquid for Rechargeable Flow Batteries. Advanced Materials, 2015, 27, 2501-2506.	21.0	137
7	Outdoor performance of large scale DSC modules. Journal of Photochemistry and Photobiology A: Chemistry, 2004, 164, 203-207.	3.9	131
8	A novel inorganic solid state ion conductor for rechargeable Mg batteries. Chemical Communications, 2014, 50, 1320-1322.	4.1	124
9	A rechargeable non-aqueous Mg–O2 battery. Chemical Communications, 2013, 49, 9152.	4.1	87
10	Design of Non-aqueous Liquid Electrolytes for Rechargeable Li-O2 Batteries. Electrochemistry, 2011, 79, 876-881.	1.4	85
11	Harvesting Photons in the Infrared. Electron Injection from Excited Tricarbocyanine Dye (IR-125) into TiO2and Ag@TiO2Coreâ^'Shell Nanoparticles. Journal of Physical Chemistry C, 2007, 111, 488-494.	3.1	82
12	Cathode reaction mechanism of non-aqueous Li–O2 batteries with highly oxygen radical stable electrolyte solvent. Journal of Power Sources, 2013, 228, 47-56.	7.8	80
13	Ether-functionalized ionic liquid electrolytes for lithium-air batteries. Journal of Power Sources, 2013, 243, 19-23.	7.8	74
14	Stability of Solvents against Superoxide Radical Species for the Electrolyte of Lithium-Air Battery. ECS Electrochemistry Letters, 2012, 1, A27-A29.	1.9	69
15	Solar cells using iodine-doped polythiophene–porphyrin polymer films. Solar Energy Materials and Solar Cells, 2006, 90, 1322-1330.	6.2	65
16	Solvent dependence of the charge-transfer properties of a quaterthiophene–anthraquinone dyad. Journal of Photochemistry and Photobiology A: Chemistry, 2008, 197, 364-374.	3.9	52
17	Evaluation and analysis of Li-air battery using ether-functionalized ionic liquid. Journal of Power Sources, 2013, 240, 14-17.	7.8	49
18	Harvesting Infrared Photons with Tricarbocyanine Dye Clusters. Journal of Physical Chemistry B, 2006, 110, 16169-16173.	2.6	41

#	Article	IF	Citations
19	Harvesting Infrared Photons with Croconate Dyes. Chemistry of Materials, 2008, 20, 265-272.	6.7	37
20	Catalytic Cycle Employing a TEMPO–Anion Complex to Obtain a Secondary Mg–O ₂ Battery. Journal of Physical Chemistry Letters, 2014, 5, 1648-1652.	4.6	36
21	A highly efficient Li ₂ O ₂ oxidation system in Li–O ₂ batteries. Chemical Communications, 2016, 52, 12151-12154.	4.1	29
22	Photovoltaic performance and stability of CdTe/polymeric hybrid solar cells using a C60 buffer layer. Solar Energy Materials and Solar Cells, 2006, 90, 1849-1858.	6.2	28
23	Water in Ionic Liquid for Electrochemical Li Cycling. ACS Energy Letters, 2016, 1, 542-547.	17.4	28
24	Water-tolerant lithium metal cycling in high lithium concentration phosphonium-based ionic liquid electrolytes. Sustainable Energy and Fuels, 2018, 2, 2276-2283.	4.9	27
25	Quantitation of Li2O2 stored in Li–O2 batteries based on its reaction with an oxoammonium salt. Chemical Communications, 2013, 49, 8389.	4.1	23
26	Excited-State and Photoelectrochemical Behavior of Pyrene-Linked Phenyleneethynylene Oligomer. Journal of Physical Chemistry B, 2008, 112, 14539-14547.	2.6	21
27	Solid-State Solar Cells Consisting of Polythiophene-Porphyrin Composite Films. Japanese Journal of Applied Physics, 2005, 44, 2799-2802.	1.5	19
28	Enhancement of oxygen reduction reaction rate by addition of water to an oxidatively stable ionic liquid electrolyte for lithium-air cells. Electrochemistry Communications, 2016, 73, 55-58.	4.7	19
29	Decoupling Energy Storage from Electrochemical Reactions in Li–Air Batteries toward Achieving Continuous Discharge. ACS Energy Letters, 2017, 2, 694-699.	17.4	15
30	Investigation of the Relationship between Solvation Structure and Battery Performance in Highly Concentrated Aqueous Nitroxy Radical Catholyte. Journal of Physical Chemistry C, 2018, 122, 13815-13826.	3.1	15
31	Chlorination of chitin with sulfuryl chloride under homogeneous conditions. Carbohydrate Polymers, 1997, 33, 13-18.	10.2	14
32	Characterization and Evaluation of Role of Porphyrin Moiety inmeso-Tetrathienylporphyrin–Polythiophene Composite Film. Japanese Journal of Applied Physics, 2007, 46, 2632-2635.	1.5	13
33	Facile Fabrication and Photocurrent Generation Properties of Electrochemically Polymerized Fullerene–Poly(ethylene dioxythiophene) Composite Films. Japanese Journal of Applied Physics, 2009, 48, 04C172.	1.5	13
34	A Z-scheme type photoelectrochemical cell consisting of porphyrin-containing polymer and dye-sensitized TiO2electrodes. Photochemical and Photobiological Sciences, 2010, 9, 1085-1087.	2.9	11
35	Search for high-capacity oxygen storage materials by materials informatics. RSC Advances, 2019, 9, 41811-41816.	3.6	10
36	Synthesis and Nucleophilic Substitution of Tosylated Konjac Glucomannan Journal of Fiber Science and Technology, 1999, 55, 315-322.	0.0	7

#	Article	IF	CITATIONS
37	Nonâ€Aqueous Primary Li–Air Flow Battery and Optimization of its Cathode through Experiment and Modeling. ChemSusChem, 2017, 10, 4198-4206.	6.8	7
38	Effects of Hole Transport Layer on Photoelectrochemical Responses from Polythiophene–Porphyrin Composite Polymer Electrode. Applied Physics Express, 2010, 3, 122301.	2.4	6
39	Effect of cathode porosity on the Lithium-air cell oxygen reduction reaction – A rotating ring-disk electrode investigation. Electrochimica Acta, 2017, 248, 570-577.	5.2	6
40	Artificial SEI Transplantation: A Pathway to Enabling Lithium Metal Cycling in Water-Containing Electrolytes. ACS Applied Energy Materials, 2019, 2, 8912-8918.	5.1	6
41	Reduction of iodine complexed with sulfoxides and organophosphorus esters near 4.0ÂV vs. Li/Li+. Journal of Power Sources, 2012, 217, 538-542.	7.8	4
42	Self-Learning Molecular Design for High Lithium-Ion Conductive Ionic Liquids using Maze Game. Journal of Chemical Information and Modeling, 2020, 60, 4904-4911.	5.4	4
43	Nonaqueous Electrolytes. , 2014, , 23-58.		4
44	Finding a novel electrolyte solution of lithium-ion batteries using an autonomous search system based on ensemble optimization. Journal of Power Sources, 2022, 541, 231698.	7.8	4
45	An Influence of Monomeric Porphyrin Structure on the Electropolymerized Photoactive Electrode for Polymer Solar Cells. Molecular Crystals and Liquid Crystals, 2011, 538, 10-14.	0.9	2
46	Catholytes: A Highly Concentrated Catholyte Based on a Solvate Ionic Liquid for Rechargeable Flow Batteries (Adv. Mater. 15/2015). Advanced Materials, 2015, 27, 2547-2547.	21.0	0
47	Dye Sensitization Effect on Photocurrent Generation of Porphyrin-Polythiophene Composite Films., 2006,,.		O