List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6526/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Laccase immobilization with metal-organic frameworks: Current status, remaining challenges and future perspectives. Critical Reviews in Environmental Science and Technology, 2022, 52, 1282-1324.	6.6	17
2	A photoaffinity labeling strategy identified EF1A1 as a binding protein of cyclic dinucleotide 2′3′-cGAMP. Cell Chemical Biology, 2022, 29, 133-144.e20.	2.5	4
3	Basicity of titanium-based coagulants matters in the treatment of low-turbidity water. Separation and Purification Technology, 2022, 281, 119989.	3.9	7
4	An all-in-one approach for synthesis and functionalization of nano colloidal gold with acetylacetone. Nanotechnology, 2022, 33, 075605.	1.3	2
5	Peroxyl radicals from diketones enhanced the indirect photochemical transformation of carbamazepine: Kinetics, mechanisms, and products. Water Research, 2022, 217, 118424.	5.3	14
6	Titanium xerogel as a potential alternative for polymeric ferric sulfate in coagulation removal of antimony from reverse osmosis concentrate. Separation and Purification Technology, 2022, 291, 120863.	3.9	9
7	Diketone-mediated photochemical reduction of selenite to elemental selenium: Role of carbon-centered radicals and complexation. Chemical Engineering Journal, 2022, 445, 136831.	6.6	5
8	Acetylacetone Interferes with Carbon and Nitrogen Metabolism of <i>Microcystis aeruginosa</i> by Cutting Off the Electron Flow to Ferredoxin. Environmental Science & Technology, 2022, 56, 9683-9692.	4.6	14
9	Potential of titanium coagulants for water and wastewater treatment: Current status and future perspectives. Chemical Engineering Journal, 2021, 406, 126837.	6.6	58
10	Effects of Low-Molecular-Weight Organics on the Photoreduction of Bromate in Water. ACS ES&T Engineering, 2021, 1, 581-590.	3.7	10
11	Analysis of key factors in the coagulation of metal salts based on the calculation of hydrolysis-precipitation distribution. Scientia Sinica Chimica, 2021, 51, 458-467.	0.2	9
12	Key structural features that determine the selectivity of UV/acetylacetone for the degradation of aromatic pollutants when compared to UV/H2O2. Water Research, 2021, 196, 117046.	5.3	33
13	Titanium Coagulation Simplified Removal Procedure and Alleviated Membrane Fouling in Treatment of Antimony-Containing Wastewater. ACS ES&T Engineering, 2021, 1, 1094-1103.	3.7	17
14	Photochemical Synthesis of Selenium Nanospheres of Tunable Size and Colloidal Stability with Simple Diketones. Langmuir, 2021, 37, 9793-9801.	1.6	5
15	Oxygen-vacancy-mediated energy transfer for singlet oxygen generation by diketone-anchored MIL-125. Applied Catalysis B: Environmental, 2021, 292, 120197.	10.8	99
16	Regulation of Photosynthesis in Bloom-Forming Cyanobacteria with the Simplest β-Diketone. Environmental Science & Technology, 2021, 55, 14173-14184.	4.6	24
17	A joint mechanism for singlet oxygen generation by diketone-anchored MIL-101: Exciton-mediated energy transfer and photosensitization. Applied Catalysis A: General, 2021, 626, 118360.	2.2	7
18	The suitability of titanium salts in coagulation removal of micropollutants and in alleviation of membrane fouling. Water Research, 2021, 205, 117692.	5.3	37

#	Article	IF	CITATIONS
19	UV-Induced Redox Conversion of Tellurite by Biacetyl. Environmental Science & Technology, 2021, 55, 16646-16654.	4.6	6
20	Sludge reduction and cost saving in removal of Cu(II)-EDTA from electroplating wastewater by introducing a low dose of acetylacetone into the Fe(III)/UV/NaOH process. Journal of Hazardous Materials, 2020, 382, 121107.	6.5	22
21	Quantitative structure-activity relationship in the photodegradation of azo dyes. Journal of Environmental Sciences, 2020, 90, 41-50.	3.2	22
22	Reduction of chromate with UV/diacetyl for the final effluent to be below the discharge limit. Journal of Hazardous Materials, 2020, 389, 121841.	6.5	15
23	Mechanistic Study of Pb(II) Removal by TiO ₂ and Effect of PO ₄ . Langmuir, 2020, 36, 13918-13927.	1.6	10
24	Intraligand charge transfer boosts visible-light-driven generation of singlet oxygen by metal-organic frameworks. Applied Catalysis B: Environmental, 2020, 273, 119087.	10.8	62
25	Metal-free generation of hydroxyl radicals by benzoate-mediated decomposition of peroxides. Chemical Communications, 2020, 56, 7443-7446.	2.2	7
26	Key factors in the ligand effects on the photo redox cycling of aqueous iron species. Geochimica Et Cosmochimica Acta, 2020, 281, 1-11.	1.6	18
27	Deep removal of arsenite from water with no need for pre-oxidation or in-line oxidation. Chemical Engineering Journal, 2020, 401, 126046.	6.6	16
28	Role of complexation in the photochemical reduction of chromate by acetylacetone. Journal of Hazardous Materials, 2020, 400, 123306.	6.5	15
29	Enhanced Photooxidation of Hydroquinone by Acetylacetone, a Novel Photosensitizer and Electron Shuttle. Environmental Science & Technology, 2019, 53, 11232-11239.	4.6	16
30	Overlooked Role of Peroxides as Free Radical Precursors in Advanced Oxidation Processes. Environmental Science & Technology, 2019, 53, 2054-2062.	4.6	48
31	Ligand effects on arsenite removal by zero-valent iron/O2: Dissolution, corrosion, oxidation and coprecipitation. Journal of Environmental Sciences, 2019, 86, 131-140.	3.2	12
32	Effects of acetylacetone on the thermal and photochemical conversion of benzoquinone in aqueous solution. Chemosphere, 2019, 223, 628-635.	4.2	7
33	Acetylacetone extends the working life of laccase in enzymatic transformation of malachite green by interfering with a key intermediate. Journal of Hazardous Materials, 2019, 366, 520-528.	6.5	9
34	Improved resistance to organic matter load by compositing a cationic flocculant into the titanium xerogel coagulant. Separation and Purification Technology, 2019, 211, 715-722.	3.9	30
35	Enhanced decomplexation of Cu(II)-EDTA: The role of acetylacetone in Cu-mediated photo-Fenton reactions. Chemical Engineering Journal, 2019, 358, 1218-1226.	6.6	48
36	Coagulation removal of fluoride by zirconium tetrachloride: Performance evaluation and mechanism analysis. Chemosphere, 2019, 218, 860-868.	4.2	81

#	Article	IF	CITATIONS
37	Sorption removal of phthalate esters and bisphenols to biofilms from urban river: From macroscopic to microcosmic investigation. Water Research, 2019, 150, 261-270.	5.3	33
38	Advantages of titanium xerogel over titanium tetrachloride and polytitanium tetrachloride in coagulation: A mechanism analysis. Water Research, 2018, 132, 350-360.	5.3	49
39	Feasibility of the UV/AA process as a pretreatment approach for bioremediation of dye-laden wastewater. Chemosphere, 2018, 194, 488-494.	4.2	14
40	Potent removal of cyanobacteria with controlled release of toxic secondary metabolites by a titanium xerogel coagulant. Water Research, 2018, 128, 341-349.	5.3	47
41	Nonnegligible Generation of Hydroxyl Radicals from UVC Photolysis of Aqueous Nitrous Oxide. Environmental Science & Technology, 2018, 52, 9785-9792.	4.6	10
42	Redox Conversion of Arsenite and Nitrate in the UV/Quinone Systems. Environmental Science & Technology, 2018, 52, 10011-10018.	4.6	45
43	Ligand effects on nitrate reduction by zero-valent iron: Role of surface complexation. Water Research, 2017, 114, 218-227.	5.3	55
44	Applicability of light sources and the inner filter effect in UV/acetylacetone and UV/H 2 O 2 processes. Journal of Hazardous Materials, 2017, 335, 100-107.	6.5	21
45	Effects of acetylacetone on the photoconversion of pharmaceuticals in natural and pure waters. Environmental Pollution, 2017, 225, 691-699.	3.7	38
46	Acetylacetone as an efficient electron shuttle for concerted redox conversion of arsenite and nitrate in the opposite direction. Water Research, 2017, 124, 331-340.	5.3	31
47	Effects of water chemistry on decolorization in three photochemical processes: Pro and cons of the UV/AA process. Water Research, 2016, 105, 568-574.	5.3	20
48	Preparation and Evaluation of Titanium-Based Xerogel as a Promising Coagulant for Water/Wastewater Treatment. Environmental Science & Technology, 2016, 50, 9619-9626.	4.6	54
49	Fate and implication of acetylacetone in photochemical processes for water treatment. Water Research, 2016, 101, 233-240.	5.3	36
50	Co-immobilization of laccase and mediator through a self-initiated one-pot process for enhanced conversion of malachite green. Journal of Colloid and Interface Science, 2016, 471, 20-28.	5.0	23
51	Facile Synthesis and Evaluation of Size-tunable Immobilized Laccase-mediator Microreactor. Acta Chimica Sinica, 2016, 74, 518.	0.5	2
52	The photochemistry of carbon nanotubes and its impact on the photo-degradation of dye pollutants in aqueous solutions. Journal of Colloid and Interface Science, 2015, 439, 98-104.	5.0	18
53	A settling curve modeling method for quantitative description of the dispersion stability of carbon nanotubes in aquatic environments. Journal of Environmental Sciences, 2015, 29, 1-10.	3.2	12
54	Improved performance and prolonged lifetime of titania-based materials: sequential use as adsorbent and photocatalyst. Science China Chemistry, 2015, 58, 1211-1219.	4.2	6

#	Article	IF	CITATIONS
55	Iron in non-hydroxyl radical mediated photochemical processes for dye degradation: Catalyst or inhibitor?. Chemosphere, 2015, 131, 55-62.	4.2	18
56	Potential of acetylacetone as a mediator for Trametes versicolor laccase in enzymatic transformation of organic pollutants. Environmental Science and Pollution Research, 2015, 22, 10882-10889.	2.7	16
57	Immobilization of laccase in a sponge-like hydrogel for enhanced durability in enzymatic degradation of dye pollutants. Journal of Colloid and Interface Science, 2015, 450, 353-360.	5.0	86
58	Enhanced visible light responsive photocatalytic activity of TiO2-based nanocrystallites: impact of doping sequence. RSC Advances, 2015, 5, 7363-7369.	1.7	20
59	Diketone-Mediated Photochemical Processes for Target-Selective Degradation of Dye Pollutants. Environmental Science and Technology Letters, 2014, 1, 167-171.	3.9	46
60	Recyclable polymer-based nano-hydrous manganese dioxide for highly efficient Tl(I) removal from water. Science China Chemistry, 2014, 57, 763-771.	4.2	31
61	Effect of spatial distribution and aging of ZVI on the reactivity of resin–ZVI composites for arsenite removal. Journal of Materials Science, 2014, 49, 7073-7079.	1.7	10
62	Light-triggered reversible sorption of azo dyes on titanium xerogels with photo-switchable acetylacetonato anchors. Chemical Communications, 2014, 50, 1086-1088.	2.2	15
63	Non-hydroxyl radical mediated photochemical processes for dye degradation. Physical Chemistry Chemical Physics, 2014, 16, 7571-7577.	1.3	38
64	Kinetics and efficiency of the hydrated electron-induced dehalogenation by the sulfite/UV process. Water Research, 2014, 62, 220-228.	5.3	95
65	Iron-mediated oxidation of arsenic(III) by oxygen and hydrogen peroxide: Dispersed versus resin-supported zero-valent iron. Journal of Colloid and Interface Science, 2014, 428, 179-184.	5.0	13
66	Decoloration of Alizarin Red (an Anthraquinone Dye) with the UV/Acetylacetone Process. Acta Chimica Sinica, 2014, 72, 461.	0.5	6
67	Application potential of carbon nanotubes in water treatment: A review. Journal of Environmental Sciences, 2013, 25, 1263-1280.	3.2	280
68	Preparation and performance evaluation of resin-derived carbon spheres for desulfurization of fuels. Science China Chemistry, 2013, 56, 393-398.	4.2	8
69	Oxalate-promoted dissolution of hydrous ferric oxide immobilized within nanoporous polymers: Effect of ionic strength and visible light irradiation. Chemical Engineering Journal, 2013, 232, 167-173.	6.6	31
70	A thermally stable mesoporous ZrO2–CeO2–TiO2 visible light photocatalyst. Chemical Engineering Journal, 2013, 229, 118-125.	6.6	40
71	Bifunctional resin-ZVI composites for effective removal of arsenite through simultaneous adsorption and oxidation. Water Research, 2013, 47, 6064-6074.	5.3	102
72	Applicability of the linear solvation energy relationships in the prediction for adsorption of aromatic compounds on activated carbons from aqueous solutions. Separation and Purification Technology, 2013, 117, 111-117.	3.9	14

#	Article	IF	CITATIONS
73	Photodegradation of Acid Orange 7 in a UV/acetylacetone process. Chemosphere, 2013, 93, 2877-2882.	4.2	44
74	Surface Chemistry of Nanosized Hydrated Ferric Oxide Encapsulated Inside Porous Polymer: Modeling and Experimental Studies. Journal of Physical Chemistry C, 2013, 117, 6201-6209.	1.5	37
75	The correlation between structural characteristics of activated carbons and their adsorption of organic solutes from aqueous solutions. Adsorption, 2012, 18, 229-238.	1.4	6
76	Effect of effluent organic matter on the adsorption of perfluorinated compounds onto activated carbon. Journal of Hazardous Materials, 2012, 225-226, 99-106.	6.5	151
77	A fabrication strategy for nanosized zero valent iron (nZVI)–polymeric anion exchanger composites with tunable structure for nitrate reduction. Journal of Hazardous Materials, 2012, 233-234, 1-6.	6.5	36
78	Visible Light Photocatalytic Degradation of RhB by Polymer-CdS Nanocomposites: Role of the Host Functional Groups. ACS Applied Materials & Interfaces, 2012, 4, 3938-3943.	4.0	58
79	Efficient As(III) removal by macroporous anion exchanger-supported Fe–Mn binary oxide: Behavior and mechanism. Chemical Engineering Journal, 2012, 193-194, 131-138.	6.6	81
80	Effect of sulfate on Cu(II) sorption to polymer-supported nano-iron oxides: Behavior and XPS study. Journal of Colloid and Interface Science, 2012, 366, 37-43.	5.0	56
81	Simple fabrication of polymer-based Trametes versicolor laccase for decolorization of malachite green. Bioresource Technology, 2012, 115, 16-20.	4.8	17
82	Heavy metal removal from water/wastewater by nanosized metal oxides: A review. Journal of Hazardous Materials, 2012, 211-212, 317-331.	6.5	1,767
83	Impact of carbon nanotube morphology on phenanthrene adsorption. Environmental Toxicology and Chemistry, 2012, 31, 73-78.	2.2	47
84	Adsorption kinetics of aromatic compounds on carbon nanotubes and activated carbons. Environmental Toxicology and Chemistry, 2012, 31, 79-85.	2.2	51
85	The effects of dissolved natural organic matter on the adsorption of synthetic organic chemicals by activated carbons and carbon nanotubes. Water Research, 2011, 45, 1378-1386.	5.3	126
86	Hydrous ferric oxide–resin nanocomposites of tunable structure for arsenite removal: Effect of the host pore structure. Journal of Hazardous Materials, 2011, 198, 241-246.	6.5	74
87	Effect of CdS distribution on the photocatalytic performance of resin-CdS nanocomposites. Chemical Engineering Journal, 2011, 174, 351-356.	6.6	14
88	Catalytic dechlorination of monochlorobenzene by Pd/Fe nanoparticles immobilized within a polymeric anion exchanger. Chemical Engineering Journal, 2011, 178, 161-167.	6.6	44
89	New insights into nanocomposite adsorbents for water treatment: A case study of polystyrene-supported zirconium phosphate nanoparticles for lead removal. Journal of Nanoparticle Research, 2011, 13, 5355-5364.	0.8	54
90	Polymer-supported nanocomposites for environmental application: A review. Chemical Engineering Journal, 2011, 170, 381-394.	6.6	534

#	Article	IF	CITATIONS
91	Immobilization of polyethylenimine nanoclusters onto a cation exchange resin through self-crosslinking for selective Cu(II) removal. Journal of Hazardous Materials, 2011, 190, 1037-1044.	6.5	55
92	Fabrication of anion exchanger resin/nano-CdS composite photocatalyst for visible light RhB degradation. Nanotechnology, 2011, 22, 305707.	1.3	14
93	An XPS study for mechanisms of arsenate adsorption onto a magnetite-doped activated carbon fiber. Journal of Colloid and Interface Science, 2010, 343, 232-238.	5.0	161
94	Preparation and evaluation of a magnetite-doped activated carbon fiber for enhanced arsenic removal. Carbon, 2010, 48, 60-67.	5.4	162
95	Adsorption of synthetic organic chemicals by carbon nanotubes: Effects of background solution chemistry. Water Research, 2010, 44, 2067-2074.	5.3	207
96	Adsorption of Aromatic Compounds by Carbonaceous Adsorbents: A Comparative Study on Granular Activated Carbon, Activated Carbon Fiber, and Carbon Nanotubes. Environmental Science & Technology, 2010, 44, 6377-6383.	4.6	237
97	The Impacts of Aggregation and Surface Chemistry of Carbon Nanotubes on the Adsorption of Synthetic Organic Compounds. Environmental Science & amp; Technology, 2009, 43, 5719-5725.	4.6	146
98	Fabrication and Evaluation of Mesoporous Poly(vinyl alcohol)-Based Activated Carbon Fibers. Industrial & Engineering Chemistry Research, 2009, 48, 3398-3402.	1.8	9
99	Structure evolution and optimization in the fabrication of PVA-based activated carbon fibers. Journal of Colloid and Interface Science, 2008, 321, 96-102.	5.0	37
100	Kinetics and Mechanisms of Radiolytic Degradation of Nitrobenzene in Aqueous Solutions. Environmental Science & Technology, 2007, 41, 1977-1982.	4.6	51
101	Removal of 2,4-dichlorophenol from aqueous solution by static-air-activated carbon fibers. Journal of Colloid and Interface Science, 2007, 313, 80-85.	5.0	32
102	PVA-based activated carbon fibers with lotus root-like axially porous structure. Carbon, 2006, 44, 2059-2068.	5.4	75
103	Effects of an electric or magnetic field on the radiolytic degradation of two biorefractory contaminants. Journal of Hazardous Materials, 2005, 119, 153-158.	6.5	2
104	Optimization of Radiolytic Degradation of Poly(vinyl alcohol). Industrial & Engineering Chemistry Research, 2005, 44, 1995-2001.	1.8	14
105	Kinetic modeling of the radiolytic degradation of Acid Orange 7 in aqueous solutions. Water Research, 2005, 39, 839-846.	5.3	33
106	Radiation-induced degradation of polyvinyl alcohol in aqueous solutions. Water Research, 2004, 38, 309-316.	5.3	99
107	Mechanistic Study on the Radiolysis of Dilute PVA Aqueous Solutions. Chemistry Letters, 2004, 33, 562-563.	0.7	2
108	Radiation-induced Degradation of Nitrobenzene in Aqueous Solutions. Chemistry Letters, 2003, 32, 718-719.	0.7	9